The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The conformation of cross-linked actin.S-1 in the presence and absence of ATP.

Electron microscopy studies have shown that the structure of the complex of myosin subfragment 1 (S-1) cross-linked to actin with 1-ethyl-3-[3-(dimethyl-amino) propyl] carbodiimide is very different in the presence and absence of ATP (Craig, R., Greene, L. E., and Eisenberg, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3247-3251). More recent studies have found that the structure of the cross-linked complex between S-1 modified extensively with N-ethylmaleimide (NEM.S-1) and actin resembles that of the rigor complex both in the presence and absence of ATP, whereas the structure of the cross-linked complex between S-1 modified with N',N'-p-phenylenedimaleimide (pPDM.S-1) and actin resembles that of the cross-linked actin.S-1 complex in the presence of ATP. In the present study, we have obtained biochemical evidence supporting these results. The conformation of the different cross-linked actin.S-1 complexes was determined by studying their effect on the troponin-tropomyosin-actin complex (regulated actin). The basis of this probe for conformation is that S-1.ATP, which is in the weak-binding conformation, interacts very differently with regulated actin than S-1 or S-1.ADP, which are in the strong-binding conformation. We find that both in the presence and absence of ATP, cross-linked NEM.S-1 appears to be in the strong-binding conformation, whereas cross-linked pPDM.S-1 appears to be shifted toward the weak-binding conformation. In contrast, cross-linked unmodified S-1 appears to be in the strong-binding conformation in the presence of ADP and the weak-binding conformation in the presence of ATP. Therefore, in agreement with electron microscopy studies, the cross-linked actin.S-1 complex appears to be able to alternate between the weak-binding and strong-binding conformation during the cross-bridge cycle.[1]

References

 
WikiGenes - Universities