The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Computer-graphics interpretations of residue exchanges between the alpha, beta and gamma subunits of human-liver alcohol dehydrogenase class I isozymes.

Three-dimensional models of human alcohol dehydrogenase subunits have been constructed, based on the homologous horse enzyme, with computer graphics. All types of class I subunits (alpha, beta, and gamma) and the major allelic variants (beta 1/beta 2 and gamma 1/gamma 2) have been studied. Residue differences between the E-type subunit of the horse enzyme and any of the subunits of the human isozymes occur at 64 positions, about half of which are isozyme-specific. About two thirds of the substitutions are at the surface and all differences can be accommodated in highly conserved three-dimensional structures. The model of the gamma isozyme is most similar to the crystallographically analyzed horse liver E-type alcohol dehydrogenase, and has all the functional residues identical to those of the E subunit except for one which is slightly smaller: Val-141 in the substrate pocket. The residues involved in coenzyme binding are generally conserved between the horse enzyme and the alpha, beta, and gamma types of the human enzyme. In contrast, single exchanges of these residues are the ones involved in the major allelic differences (beta 1 versus beta 2 and gamma 1 versus gamma 2), which affects the overall rate of alcohol oxidation since NADH dissociation is the rate-determining step. Residue 47 is His in beta 2 and Arg in the beta 1, gamma 1, and gamma 2 subunits, and in horse liver alcohol dehydrogenase. Both His and Arg can make a hydrogen bond to a phosphate oxygen atom of NAD; hence the lower turnover rate of beta 1 apparently derives from a charge effect. The substitution to Gly in the alpha subunit results in one less hydrogen bond in NAD binding, and consequently in rapid dissociation. This may explain why the overall rate is an order of magnitude faster than that of beta 1. The important difference between gamma 1 and gamma 2 is an exchange at position 271 from Arg to Gln which can give a hydrogen bond from Gln in gamma 2 to the adenine of NAD. The tighter binding to gamma 2 can account for the slower overall catalytic rate in this isozyme. The kinetics and interactions of cyclohexanol and benzyl alcohol with the isozymes were judged by docking experiments using an interactive fitting program.(ABSTRACT TRUNCATED AT 400 WORDS)[1]


WikiGenes - Universities