The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CYCLOHEXANOL     cyclohexanol

Synonyms: Hydralin, Adronal, Adronol, Hexalin, Hydrophenol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cyclohexanol

 

High impact information on cyclohexanol

  • Transient kinetics experiments show that cyclohexanol inhibition is due to a slower rate of dissociation of NADH from the abortive enzyme-NADH-cyclohexanol complex than from the enzyme-NADH complex [6].
  • MmADH alpha reacts 130-fold slower (V/K) with ethanol and 3-25-fold slower with 2-methyl alcohols but 20-fold faster with cyclohexanol, as compared with horse (Equus caballus) liver EE isoenzyme (EqADH) [7].
  • Docking of cyclohexanol-derivatives into the active site of liver alcohol dehydrogenase. Using computer graphics and energy minimization [8].
  • A highly efficient MEEKC separation method was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 2.89% w/v SDS, 1.36% w/v heptane, 7.66% w/v cyclohexanol, and 2% w/v ACN [9].
  • The reaction is found to be first-order with respect to acetic anhydride, cyclohexanol, and DMAP, and zero-order with respect to triethyl amine [10].
 

Chemical compound and disease context of cyclohexanol

 

Biological context of cyclohexanol

 

Anatomical context of cyclohexanol

 

Associations of cyclohexanol with other chemical compounds

  • The nonhyperbolic saturation kinetics for oxidation of ethanol, cyclohexanol, and 1-butanol are quantitatively explained with the abortive complex mechanism [6].
  • A conformational change, termed the T --> R transition, which can be detected by visible, circular dichoric, and fluorescence spectroscopy, occurs in native insulin and tryptophan substituted insulin analogs ([TrpB25]-, [TrpB26]-, [GlyB24,TrpB25]-, and [GlyB24,TrpB26]insulin) upon binding specific alcohol ligands, including phenol and cyclohexanol [21].
  • To impart porosity to the product, cyclohexanol and 1-dodecanol were added as inert diluents to the polymerization mixture [22].
  • The kinetics and interactions of cyclohexanol and benzyl alcohol with the isozymes were judged by docking experiments using an interactive fitting program.(ABSTRACT TRUNCATED AT 400 WORDS)[23]
  • An autoradiographic analysis of high-affinity binding sites for the vesicular acetylcholine transport blocker [3H]vesamicol (2-(4-phenylpiperidino) cyclohexanol; AH 5183) was conducted in rat brain [24].
 

Gene context of cyclohexanol

  • Here, we tested the effect upon Arc expression of a novel antidepressant and selective 5-hydroxytryptamine/noradrenaline reuptake inhibitor (SNRI), (-)1-(1-dimethylaminomethyl) 5-methoxybenzocyclobutan-1-yl) cyclohexanol (S33005) [25].
  • Oxidation of cyclohexanol by the homodimers beta 2 beta 2 and gamma 1 gamma 1 follows conventional Michaelis-Menten kinetics [26].
  • Cyclohexanol and methylcyclohexanols. A family of inhibitors of hepatic HMGCoA reductase in vivo [27].
  • In addition, the 7' (a = 15.9712(18) angstroms, b = 15.9253(19) angstroms, c = 18.475(2) angstroms, Pbca), a compound isostructural with 7, is synthesized by using cyclohexanol as a template [28].
  • Immunoglobulin G, which recognizes each stereoisomeric cyclohexanol moiety, was coupled to cyanogen bromide-activated Sepharose 4B to prepare re-usable immobilized antibody, and its specificity was improved by examination of a washing process after charging of samples [29].
 

Analytical, diagnostic and therapeutic context of cyclohexanol

References

  1. Identification of a transcriptional activator (ChnR) and a 6-oxohexanoate dehydrogenase (ChnE) in the cyclohexanol catabolic pathway in Acinetobacter sp. Strain NCIMB 9871 and localization of the genes that encode them. Iwaki, H., Hasegawa, Y., Teraoka, M., Tokuyama, T., Bergeron, H., Lau, P.C. Appl. Environ. Microbiol. (1999) [Pubmed]
  2. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. Strain SE19 by in vitro transposition. Cheng, Q., Thomas, S.M., Kostichka, K., Valentine, J.R., Nagarajan, V. J. Bacteriol. (2000) [Pubmed]
  3. Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Van Beilen, J.B., Mourlane, F., Seeger, M.A., Kovac, J., Li, Z., Smits, T.H., Fritsche, U., Witholt, B. Environ. Microbiol. (2003) [Pubmed]
  4. Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species. Dangel, W., Tschech, A., Fuchs, G. Arch. Microbiol. (1989) [Pubmed]
  5. Antimutagenicity of cyclohexanol towards 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone and N-nitrosodiethylamine in Salmonella typhimurium strain TA100. Espinosa-Aguirre, J.J., Vilchis, C., Ostrosky-Wegman, P., Benitez, L., Lares, I., Rubio, J. Mutat. Res. (1993) [Pubmed]
  6. Kinetic cooperativity of human liver alcohol dehydrogenase gamma(2). Charlier, H.A., Plapp, B.V. J. Biol. Chem. (2000) [Pubmed]
  7. Alpha-isoenzyme of alcohol dehydrogenase from monkey liver. Cloning, expression, mechanism, coenzyme, and substrate specificity. Light, D.R., Dennis, M.S., Forsythe, I.J., Liu, C.C., Green, D.W., Kratzer, D.A., Plapp, B.V. J. Biol. Chem. (1992) [Pubmed]
  8. Docking of cyclohexanol-derivatives into the active site of liver alcohol dehydrogenase. Using computer graphics and energy minimization. Horjales, E., Brändén, C.I. J. Biol. Chem. (1985) [Pubmed]
  9. Analyses of phenolic compounds by microemulsion electrokinetic chromatography. Huang, H.Y., Lien, W.C. Electrophoresis (2005) [Pubmed]
  10. The DMAP-catalyzed acetylation of alcohols--a mechanistic study (DMAP = 4-(dimethylamino)pyridine). Xu, S., Held, I., Kempf, B., Mayr, H., Steglich, W., Zipse, H. Chemistry (Weinheim an der Bergstrasse, Germany) (2005) [Pubmed]
  11. The metabolism of trans-cyclohexan-1,2-diol by an Acinetobacter species. Davey, J.F., Trudgill, P.W. Eur. J. Biochem. (1977) [Pubmed]
  12. Arrhythmogenic effects of acute free fatty acid mobilization on ischemic heart. Yamazaki, N., Suzuki, Y., Kamikawa, T., Ogawa, K., Mizutani, K., Kakizawa, N., Yamamoto, M. Recent advances in studies on cardiac structure and metabolism. (1976) [Pubmed]
  13. Capillary electrophoresis with chiral selectors: optimization of separation and determination of thermodynamic parameters for binding of tioconazole enantiomers to cyclodextrins. Penn, S.G., Bergström, E.T., Goodall, D.M. Anal. Chem. (1994) [Pubmed]
  14. Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species. Brzostowicz, P.C., Walters, D.M., Jackson, R.E., Halsey, K.H., Ni, H., Rouvière, P.E. Environ. Microbiol. (2005) [Pubmed]
  15. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. Stöveken, T., Kalscheuer, R., Malkus, U., Reichelt, R., Steinbüchel, A. J. Bacteriol. (2005) [Pubmed]
  16. Acetylcholine synthesis and release by a sympathetic ganglion in the presence of 2-(4-phenylpiperidino) cyclohexanol (AH5183). Collier, B., Welner, S.A., Rícný, J., Araujo, D.M. J. Neurochem. (1986) [Pubmed]
  17. Ethanol metabolism in isolated hepatocytes. Effects of methylene blue, cyanamide and penicillamine on the redox state of the bound coenzyme and on the substrate exchange at alcohol dehydrogenase. Cronholm, T. Biochem. Pharmacol. (1993) [Pubmed]
  18. Routes of acetylcholine leakage from cytosolic and vesicular compartments of rat motor nerve terminals. Smith, D.O. Neurosci. Lett. (1992) [Pubmed]
  19. Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Casu, M.A., Porcella, A., Ruiu, S., Saba, P., Marchese, G., Carai, M.A., Reali, R., Gessa, G.L., Pani, L. Eur. J. Pharmacol. (2003) [Pubmed]
  20. Agonist-antagonist characterization of 6'-cyanohex-2'-yne-delta 8-tetrahydrocannabinol in two isolated tissue preparations. Pertwee, R.G., Fernando, S.R., Griffin, G., Ryan, W., Razdan, R.K., Compton, D.R., Martin, B.R. Eur. J. Pharmacol. (1996) [Pubmed]
  21. A spectroscopic investigation of the conformational dynamics of insulin in solution. Pittman, I., Tager, H.S. Biochemistry (1995) [Pubmed]
  22. New radiopaque polyHEMA-based hydrogel particles. Horák, D., Metalová, M., Rypácek, F. J. Biomed. Mater. Res. (1997) [Pubmed]
  23. Computer-graphics interpretations of residue exchanges between the alpha, beta and gamma subunits of human-liver alcohol dehydrogenase class I isozymes. Eklund, H., Horjales, E., Vallee, B.L., Jörnvall, H. Eur. J. Biochem. (1987) [Pubmed]
  24. [3H]vesamicol binding in brain: autoradiographic distribution, pharmacology, and effects of cholinergic lesions. Altar, C.A., Marien, M.R. Synapse (1988) [Pubmed]
  25. The novel monoamine reuptake inhibitor and potential antidepressant, S33005, induces Arc gene expression in cerebral cortex. Pei, Q., Sprakes, M., Millan, M.J., Rochat, C., Sharp, T. Eur. J. Pharmacol. (2004) [Pubmed]
  26. Beta 2 (Oriental) human liver alcohol dehydrogenases do not exhibit subunit interaction: oxidation of cyclohexanol by homo- and heterodimers. Fong, W.P., Keung, W.M. Biochemistry (1987) [Pubmed]
  27. Cyclohexanol and methylcyclohexanols. A family of inhibitors of hepatic HMGCoA reductase in vivo. Miciak, A., White, D.A., Middleton, B. Biochem. Pharmacol. (1986) [Pubmed]
  28. Two polymorphs of cobalt(II) imidazolate polymers synthesized solvothermally by using one organic template N,N-dimethylacetamide. Tian, Y.Q., Chen, Z.X., Weng, L.H., Guo, H.B., Gao, S., Zhao, D.Y. Inorganic chemistry. (2004) [Pubmed]
  29. Stereoselective determination of the active metabolites of a new anti-inflammatory agent (CS-670) in human and rat plasma using antibody-mediated extraction and high-performance liquid chromatography. Takasaki, W., Asami, M., Muramatsu, S., Hayashi, R., Tanaka, Y., Kawabata, K., Hoshiyama, K. J. Chromatogr. (1993) [Pubmed]
  30. Procedures for measuring cytochrome P-450-dependent hydroxylation activity in reproductive tissues. Senler, T.I., Dean, W.L., Pierce, W.M., Wittliff, J.L. Anal. Biochem. (1985) [Pubmed]
  31. Characterization of the CYP isozyme profile induced by cyclohexanol. Espinosa-Aguirre, J.J., Rubio, J., López, I., Nosti, R., Asteinza, J. Mutagenesis (1997) [Pubmed]
  32. Monitoring of exposure to cyclohexanone through the analysis of breath and urine. Ong, C.N., Chia, S.E., Phoon, W.H., Tan, K.T., Kok, P.W. Scandinavian journal of work, environment & health. (1991) [Pubmed]
 
WikiGenes - Universities