The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enzymes of vitamin B6 degradation. Purification and properties of 4- and 5-pyridoxolactonases.

4-Pyridoxolactone and 5-pyridoxolactone, formed by dehydrogenation of pyridoxal or isopyridoxal during the bacterial degradation of vitamin B6 by Pseudomonas MA-1 and Arthrobacter Cr-7, respectively, are hydrolyzed to the corresponding acids by distinct inducible lactonases which were purified to homogeneity. 4-Pyridoxolactonase from Pseudomonas MA-1 has an Mr of 54,000 and contains two probably identical subunits of Mr = 28,600. It has a pH optimum of 7.0, a Km of 5.9 microM, and a Vmax at 25 degrees C of 35.2 mumol X min-1 X mg-1. 5-Pyridoxolactonase from Arthrobacter Cr-7 has an Mr of 65,200 and also contains two probably identical subunits of Mr = 32,800. It has a pH optimum of 7.1-7.7, a Km of 300 microM, and a Vmax at 25 degrees C of 21.5 mumol-1 X min-1 X mg-1. The two lactonases require no added cofactors or metal ions; their activities are inhibited by sulfhydryl reagents but are not affected by metal-chelating reagents. Although the two lactonases are entirely specific for their respective substrates, 4-pyridoxolactone is a competitive inhibitor (KI = 52 microM) for 5-pyridoxolactonase, and 5-pyridoxolactone is a competitive inhibitor (KI = 48 microM) for 4-pyridoxolactonase.[1]

References

 
WikiGenes - Universities