The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

pyridoxal     3-hydroxy-5-(hydroxymethyl)- 2-methyl...

Synonyms: CHEMBL102970, AIDS-006783, CHEBI:17310, HMDB01545, ANW-64418, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pyridoxal

 

Psychiatry related information on pyridoxal

 

High impact information on pyridoxal

  • The mutant seizure phenotype can be rescued by the administration of pyridoxal and a semi-solid diet [10].
  • Although the affinity of the mutant enzyme for pyridoxal phosphate was not altered, the mutation appears to introduce a conformational change at the active site of the enzyme [11].
  • The accumulating P6C inactivates pyridoxal 5'-phosphate (PLP) by forming a Knoevenagel condensation product [12].
  • Cystathionase activity in a lymphoid cell line extracts from a vitamin B6-responsive patient with cystathioninuria was increased strikingly by pyridoxal phosphate [13].
  • Homomeric P2X4 receptors are much less sensitive to antagonism by suramin and pyridoxal 5-phosphate-6-azo-2',4'-disulfonic acid [14].
 

Chemical compound and disease context of pyridoxal

 

Biological context of pyridoxal

 

Anatomical context of pyridoxal

  • Apparent affinity to pyridoxal phosphate of the apo-delta-aminolevulinic acid synthetase obtained from erythroblasts of the patients was almost the same as that of normal controls [22].
  • Lysosomal enzyme release from cytochalasin B-treated human neutrophils stimulated by immune complexes (bovine serum albumin and IgG anti-bovine serum albumin) was inhibited by DIDS, SITS, and pyridoxal phosphate at concentrations that inhibited sulfate fluxes [23].
  • In vitro response to B6 was manifest by increased OKT activity at increased concentrations of pyridoxal phosphate in fibroblasts from the patients [24].
  • 31P nuclear magnetic resonance studies of glycogen phosphorylase from rabbit skeletal muscle: ionization states of pyridoxal 5'-phosphate [25].
  • We have measured the apparent Km for pyridoxal phosphate (PLP) in fibroblast mitochondria and the heat stability of OAT at 45 degrees C in the presence and absence of PLP, using a sensitive radiochemical assay [26].
 

Associations of pyridoxal with other chemical compounds

 

Gene context of pyridoxal

  • Interestingly, the pyridoxal-binding peptide of porcine DDC matches the Drosophila sequence perfectly suggesting considerable selective pressure on at least portions of the sequence [30].
  • The pyridoxal phosphate-dependent enzyme, 1-aminocyclopropane-1-carboxylate synthase (ACS; EC 4.4.1.14), catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants [31].
  • This effect on LPS-induced iNOS expression is mimicked by a pyridoxal-phosphate-based antagonist (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid) of the P2Z/P2X7 purinergic receptor, indicating that these results are not unique to o-ATP [32].
  • The ornithine decarboxylase is a single polypeptide (Mr = 68,000) and requires a thiol and pyridoxal phosphate for activity [33].
  • SCS1 was cloned by complementation of its Ca(2+)-requiring phenotype and found to be homologous to a family of pyridoxal phosphate enzymes that catalyze acyltransfer reactions [34].
 

Analytical, diagnostic and therapeutic context of pyridoxal

References

  1. Hormonal induction of tyrosine aminotransferase activity in host liver and hepatoma no. 7777 of normal and cofactor-depleted animals. Tryfiates, G.P., Saus, F.L., Morris, H.P. J. Natl. Cancer Inst. (1975) [Pubmed]
  2. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. Whyte, M.P., Landt, M., Ryan, L.M., Mulivor, R.A., Henthorn, P.S., Fedde, K.N., Mahuren, J.D., Coburn, S.P. J. Clin. Invest. (1995) [Pubmed]
  3. Pyridoxal phosphate as an antisickling agent in vitro. Kark, J.A., Tarassoff, P.G., Bongiovanni, R. J. Clin. Invest. (1983) [Pubmed]
  4. Abnormal regulation of plasma pyridoxal 5'-phosphate in patients with liver disease. Mitchell, D., Wagner, C., Stone, W.J., Wilkinson, G.R., Schenker, S. Gastroenterology (1976) [Pubmed]
  5. Relationship between pyridoxal 5'-phosphate deficiency and aminotransferase levels in alcoholic hepatitis. Diehl, A.M., Potter, J., Boitnott, J., Van Duyn, M.A., Herlong, H.F., Mezey, E. Gastroenterology (1984) [Pubmed]
  6. Vitamin B6 metabolism in chronic alcohol abuse The effect of ethanol oxidation on hepatic pyridoxal 5'-phosphate metabolism. Vech, R.L., Lumeng, L., Li, T.K. J. Clin. Invest. (1975) [Pubmed]
  7. Plasma pyridoxal phosphate in anxiety disorders. Emmanuel, N.P., Lydiard, R.B., Reynolds, R.D., Roberts, J., Johnson, M., Mintzer, O., Ballenger, J.C. Biol. Psychiatry (1994) [Pubmed]
  8. Nutrient-dense foods and exercise in frail elderly: effects on B vitamins, homocysteine, methylmalonic acid, and neuropsychological functioning. de Jong, N., Chin A Paw, M.J., de Groot, L.C., Rutten, R.A., Swinkels, D.W., Kok, F.J., van Staveren, W.A. Am. J. Clin. Nutr. (2001) [Pubmed]
  9. Phenelzine treatment of panic disorder: lack of effect on pyridoxal phosphate levels. Lydiard, R.B., Laraia, M.T., Howell, E.F., Fossey, M.D., Reynolds, R.D., Ballenger, J.C. Journal of clinical psychopharmacology. (1989) [Pubmed]
  10. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Waymire, K.G., Mahuren, J.D., Jaje, J.M., Guilarte, T.R., Coburn, S.P., MacGregor, G.R. Nat. Genet. (1995) [Pubmed]
  11. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. Cox, T.C., Bottomley, S.S., Wiley, J.S., Bawden, M.J., Matthews, C.S., May, B.K. N. Engl. J. Med. (1994) [Pubmed]
  12. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Mills, P.B., Struys, E., Jakobs, C., Plecko, B., Baxter, P., Baumgartner, M., Willemsen, M.A., Omran, H., Tacke, U., Uhlenberg, B., Weschke, B., Clayton, P.T. Nat. Med. (2006) [Pubmed]
  13. Vitamin B6-responsive and -unresponsive cystathioninuria: two variant molecular forms. Pascal, T.A., Gaull, G.E., Beratis, N.G., Gillam, B.M., Tallan, H.H., Hirschhorn, K. Science (1975) [Pubmed]
  14. Pharmacology of cloned P2X receptors. North, R.A., Surprenant, A. Annu. Rev. Pharmacol. Toxicol. (2000) [Pubmed]
  15. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. Parsot, C. EMBO J. (1986) [Pubmed]
  16. Hyperhomocysteinemia and low pyridoxal phosphate. Common and independent reversible risk factors for coronary artery disease. Robinson, K., Mayer, E.L., Miller, D.P., Green, R., van Lente, F., Gupta, A., Kottke-Marchant, K., Savon, S.R., Selhub, J., Nissen, S.E. Circulation (1995) [Pubmed]
  17. Vitamin B6 metabolism in liver and liver-derived tumors. Meisler, N.T., Nutter, L.M., Thanassi, J.W. Cancer Res. (1982) [Pubmed]
  18. Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5'-phosphate. Chemical rescue studies of Lys39 --> Ala mutant. Watanabe, A., Kurokawa, Y., Yoshimura, T., Kurihara, T., Soda, K., Esaki, N., Watababe, A. J. Biol. Chem. (1999) [Pubmed]
  19. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. Graham, I.M., Daly, L.E., Refsum, H.M., Robinson, K., Brattström, L.E., Ueland, P.M., Palma-Reis, R.J., Boers, G.H., Sheahan, R.G., Israelsson, B., Uiterwaal, C.S., Meleady, R., McMaster, D., Verhoef, P., Witteman, J., Rubba, P., Bellet, H., Wautrecht, J.C., de Valk, H.W., Sales Lúis, A.C., Parrot-Rouland, F.M., Tan, K.S., Higgins, I., Garcon, D., Andria, G. JAMA (1997) [Pubmed]
  20. Intestinal hydrolysis of pyridoxal 5'-phosphate in vitro and in vivo in the rat. Effect of protein binding and pH. Middleton, H.M. Gastroenterology (1986) [Pubmed]
  21. X-ray structure of MalY from Escherichia coli: a pyridoxal 5'-phosphate-dependent enzyme acting as a modulator in mal gene expression. Clausen, T., Schlegel, A., Peist, R., Schneider, E., Steegborn, C., Chang, Y.S., Haase, A., Bourenkov, G.P., Bartunik, H.D., Boos, W. EMBO J. (2000) [Pubmed]
  22. delta-Aminolevulinic acid synthetase in erythroblasts of patients with pyridoxine-responsive anemia. Hypercatabolism caused by the increased susceptibility to the controlling protease. Aoki, Y., Muranaka, S., Nakabayashi, K., Ueda, Y. J. Clin. Invest. (1979) [Pubmed]
  23. Anion channel blockers inhibit lysosomal enzyme secretion from human neutrophils without affecting generation of superoxide anion. Korchak, H.M., Eisenstat, B.A., Hoffstein, S.T., Dunham, P.B., Weissmann, G. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  24. Gyrate atrophy of the choroid and retina with hyperornithinemia: biochemical and histologic studies and response to vitamin B6. Kennaway, N.G., Weleber, R.G., Buist, N.R. Am. J. Hum. Genet. (1980) [Pubmed]
  25. 31P nuclear magnetic resonance studies of glycogen phosphorylase from rabbit skeletal muscle: ionization states of pyridoxal 5'-phosphate. Feldmann, K., Hull, W.E. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  26. Gyrate atrophy of the choroid and retina: characterization of mutant ornithine aminotransferase and mechanism of response to vitamin B6. Kennaway, N.G., Stankova, L., Wirtz, M.K., Weleber, R.G. Am. J. Hum. Genet. (1989) [Pubmed]
  27. Inhibition of erythrocyte sickling in vitro by pyridoxal. Kark, J.A., Kale, M.P., Tarassoff, P.G., Woods, M., Lessin, L.S. J. Clin. Invest. (1978) [Pubmed]
  28. Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution. Clausen, T., Huber, R., Prade, L., Wahl, M.C., Messerschmidt, A. EMBO J. (1998) [Pubmed]
  29. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. Meier, M., Janosik, M., Kery, V., Kraus, J.P., Burkhard, P. EMBO J. (2001) [Pubmed]
  30. Sequence and structure of the dopa decarboxylase gene of Drosophila: evidence for novel RNA splicing variants. Eveleth, D.D., Gietz, R.D., Spencer, C.A., Nargang, F.E., Hodgetts, R.B., Marsh, J.L. EMBO J. (1986) [Pubmed]
  31. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Tsuchisaka, A., Theologis, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  32. Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. Hu, Y., Fisette, P.L., Denlinger, L.C., Guadarrama, A.G., Sommer, J.A., Proctor, R.A., Bertics, P.J. J. Biol. Chem. (1998) [Pubmed]
  33. Ornithine decarboxylase from Saccharomyces cerevisiae. Purification, properties, and regulation of activity. Tyagi, A.K., Tabor, C.W., Tabor, H. J. Biol. Chem. (1981) [Pubmed]
  34. Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. Zhao, C., Beeler, T., Dunn, T. J. Biol. Chem. (1994) [Pubmed]
  35. Suppression of tumor growth and enhancement of immune status with high levels of dietary vitamin B6 in BALB/c mice. Gridley, D.S., Stickney, D.R., Nutter, R.L., Slater, J.M., Shultz, T.D. J. Natl. Cancer Inst. (1987) [Pubmed]
  36. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey, E.A., Schachman, H.K. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  37. Effects of DL-alpha-methylornithine on proliferation and polyamine content of 9L rat brain tumor cells. Seidenfeld, J., Marton, L.J. Cancer Res. (1980) [Pubmed]
  38. Site-specific methylation of a strategic lysyl residue in aspartate aminotransferase. Roberts, W.J., Hubert, E., Iriarte, A., Martinez-Carrion, M. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities