The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The molecular basis of inhibitor resistance in a mammalian mitochondrial cytochrome b mutant.

The mitochondrial gene for the cytochrome b of Complex III has been cloned from a mouse L-cell mutant with increased resistance to 2-n-heptyl-4-hydroxyquinoline-N-oxide and other inhibitors which block reactions at the b562 heme group. Nucleotide sequencing revealed that this gene contained a G:A transition on the coding strand at position 14,830. At the amino acid level, this mutation results in the substitution of an aspartic acid residue for a conserved glycine at position 231 of cytochrome b. Based upon current models for the secondary structure of cytochrome b, the altered amino acid lies in close proximity to one of the invariant histidine residues involved in binding the heme groups. Combining this result with the previous biochemical studies of this mutant, we hypothesize that the insertion of this highly charged side chain alters the conformation around the b562 heme group such that 2-n-heptyl-4-hydroxyquinoline-N-oxide and the other inhibitors of this group have reduced access to the inhibitor binding domain.[1]

References

  1. The molecular basis of inhibitor resistance in a mammalian mitochondrial cytochrome b mutant. Howell, N., Appel, J., Cook, J.P., Howell, B., Hauswirth, W.W. J. Biol. Chem. (1987) [Pubmed]
 
WikiGenes - Universities