"Specific" binding of [3H]imipramine to protease-sensitive and protease-resistant sites.
A number of 5-hydroxytryptamine (5-HT) uptake inhibitors have been shown to displace the binding of [3H]imipramine to rat cortical membranes in a complex manner with Hill slopes less than unity. Norzimeldine displaced the binding of [3H]imipramine in a biphasic manner with IC50 values for the two components of about 30 nM and 30 microM. This latter site alone was found in tissues that had been treated with a protease. Binding to both of these sites was displaced by 10 microM desipramine. The protease-sensitive [3H]imipramine binding sites were found to be saturable, high-affinity binding sites with a KD of 8 nM. The number of these sites varied between brain regions and was positively correlated with the regional distribution of [14C]5-HT but not [3H]noradrenaline uptake. This was not the case however for the protease-resistant but desipramine-displaceable binding sites. Since most previous [3H]imipramine binding studies have been performed with high concentrations of desipramine (10 microM) to define "specific binding," these data would suggest that either protease-sensitivity or displacability by 1 microM norzimeldine would give more reliable estimates of the specific binding.[1]References
- "Specific" binding of [3H]imipramine to protease-sensitive and protease-resistant sites. Marcusson, J., Fowler, C.J., Hall, H., Ross, S.B., Winblad, B. J. Neurochem. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









