The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Translational regulation of mRNAs for ribosomal proteins during early Drosophila development.

In Drosophila, the vast majority of mRNAs that are polysome associated during oogenesis are also polysome associated during early embryogenesis. We have previously identified an exceptional mRNA that appears to be depleted from early-embryo polysomes [Fruscoloni, P., Al-Atia, G. R., & Jacobs-Lorena, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3359-3363]. This mRNA has been subsequently identified as coding for a ribosomal protein (r-protein) [Kay, M., & Jacobs-Lorena, M. (1985) Mol. Cell. Biol. (in press)]. Changes in association with polysomes of two r-protein mRNAs during early Drosophila development were investigated for this report. Hybridization of cloned DNA probes to blots of RNA obtained from sucrose gradient fractions reveals that r-protein mRNAs are substantially associated with polysomes during oogenesis, depleted from polysomes during early embryogenesis, and again polysome associated during late embryogenesis. Thus, translation of r-protein mRNAs parallels transcription of ribosomal RNA (rRNA) during this time of development. By contrast, no such differences were observed when actin and histone probes were used as controls and hybridized to the same blots. The abundance of mRNAs for r-proteins as a function of development was also measured. Abundance was relatively high and constant during oogenesis and embryogenesis (when translational regulation is apparent), somewhat decreased in larval and pupal stages, and low in adult nonovarian tissues. Coordination between r-protein and rRNA synthesis appears to be achieved by regulating translation of r-protein mRNAs in early embryos and by decreasing their abundance in adult tissues.[1]

References

  1. Translational regulation of mRNAs for ribosomal proteins during early Drosophila development. Al-Atia, G.R., Fruscoloni, P., Jacobs-Lorena, M. Biochemistry (1985) [Pubmed]
 
WikiGenes - Universities