The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Act88F  -  Actin 88F

Drosophila melanogaster

Synonyms: Act(88F), Act88-F, Act88f, Actin, Actin, indirect flight muscle, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Act88F


Psychiatry related information on Act88F


High impact information on Act88F

  • However, DmIKK epsilon-mediated degradation of DIAP1 does not regulate apoptosis as might be predicted but instead regulates actin dynamics, cell morphology, and the differentiation of sensory organ precursor cells [7].
  • Here, we use a new RNA anchoring assay in living Drosophila blastoderm embryos to show that apical anchoring of mRNA after completion of dynein transport does not depend on actin or on continuous active transport by the motor [8].
  • Arthrin reacts with an anti-ubiquitin antibody, which demonstrates that its extra mass results from ubiquitin ligation [9].
  • Utilizing the germ-line transformation technique we demonstrate that one genetic lesion associated with the raised phenotype resides within the act88F actin gene, which, as a result, fails to specify normal mRNA accumulation during thoracic muscle differentiation [10].
  • We also provide evidence for a distinct second genetic lesion, which apparently eliminates proper posttranslational modification of two myofibrillar proteins, one of which is actin [10].

Biological context of Act88F


Anatomical context of Act88F


Associations of Act88F with chemical compounds

  • Whereas the gene products of various C-terminal mutants of Act88F translated in vitro (E334K, V339I, E364K, G368E, R372H) were substrates for ADP-ribosylation by C. botulinum C2 toxin and by C. perfringens iota toxin, neither toxin modified the N-terminal O-12 deletion mutant [2].
  • Actin from the R177Q mutant of Act88F translated in vivo was not ADP-ribosylated confirming Arg-177 as the ADP-ribose acceptor [2].
  • A single G greater than A transition converts a tryptophan (TGG) codon to an opal (TGA) terminator, thus deleting the carboxy-terminal 20 amino acids of an actin isoform that accumulates only in thoracic flight muscles [18].
  • However, the NH2-terminal 12 residues show similarity to the NH2-terminal sequence of actin, a region that interacts with myosin [19].
  • Myosin VIIa moves along actin filaments as a processive, double-headed single molecule when dimerized by the inclusion of a leucine zipper at the C terminus of the coiled-coil domain [20].

Physical interactions of Act88F

  • The second site suppression is due to a leucine to phenylalanine change within a heptameric leucine string motif adjacent to the actin binding domain of TnI [21].
  • In the absence of Ca2+, tropomyosin was in a position that blocked the myosin-binding sites on actin, as previously found with wild-type filaments [22].
  • As a result, myosin VIIB will be predominantly strongly bound to actin during steady-state ATP hydrolysis (its duty ratio will be at least 80%) [23].
  • Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila [24].

Regulatory relationships of Act88F

  • In addition, we identified previously uncharacterized proteins with putative actin-interaction domains that are up-regulated in Mhc mutants and differentially expressed in muscles [3].
  • DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo [25].

Other interactions of Act88F

  • Drosophila projectin is an extremely large protein found within the muscle sarcomeric unit, parallel with the actin and myosin filaments [26].
  • Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation [27].
  • The human (beta)-cytoplasmic actin differs by only 15 amino acids from Act88F actin which is the only actin expressed in the indirect flight muscle (IFM) of Drosophila melanogaster [28].
  • These features suggest a role for flightin in the regulation of contraction, possibly by modulating actin-myosin interaction [19].
  • Drosophila genomic DNAs containing a chromosomal locus 87C1 70,000-dalton heat shock protein gene, the locus 79B actin gene, and the 88F actin gene have been used as templates in an in vitro HeLa transcription system [29].

Analytical, diagnostic and therapeutic context of Act88F


  1. Differential epitope tagging of actin in transformed Drosophila produces distinct effects on myofibril assembly and function of the indirect flight muscle. Brault, V., Sauder, U., Reedy, M.C., Aebi, U., Schoenenberger, C.A. Mol. Biol. Cell (1999) [Pubmed]
  2. ADP-ribosylation of Drosophila indirect-flight-muscle actin and arthrin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Just, I., Hennessey, E.S., Drummond, D.R., Aktories, K., Sparrow, J.C. Biochem. J. (1993) [Pubmed]
  3. Expression profiling of a hypercontraction-induced myopathy in Drosophila suggests a compensatory cytoskeletal remodeling response. Montana, E.S., Littleton, J.T. J. Biol. Chem. (2006) [Pubmed]
  4. Left-right asymmetry: class I myosins show the direction. Spéder, P., Noselli, S. Curr. Opin. Cell Biol. (2007) [Pubmed]
  5. Functional consequences of a mutation in an expressed human alpha-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. Bookwalter, C.S., Trybus, K.M. J. Biol. Chem. (2006) [Pubmed]
  6. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Spéder, P., Adám, G., Noselli, S. Nature (2006) [Pubmed]
  7. A kinase gets caspases into shape. Montell, D.J. Cell (2006) [Pubmed]
  8. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Delanoue, R., Davis, I. Cell (2005) [Pubmed]
  9. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Ball, E., Karlik, C.C., Beall, C.J., Saville, D.L., Sparrow, J.C., Bullard, B., Fyrberg, E.A. Cell (1987) [Pubmed]
  10. The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles. Mahaffey, J.W., Coutu, M.D., Fyrberg, E.A., Inwood, W. Cell (1985) [Pubmed]
  11. Actomyosin kinetics and in vitro motility of wild-type Drosophila actin and the effects of two mutations in the Act88F gene. Anson, M., Drummond, D.R., Geeves, M.A., Hennessey, E.S., Ritchie, M.D., Sparrow, J.C. Biophys. J. (1995) [Pubmed]
  12. The binding of mutant actins to profilin, ATP and DNase I. Drummond, D.R., Hennessey, E.S., Sparrow, J.C. Eur. J. Biochem. (1992) [Pubmed]
  13. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles. Nongthomba, U., Pasalodos-Sanchez, S., Clark, S., Clayton, J.D., Sparrow, J.C. J. Muscle Res. Cell. Motil. (2001) [Pubmed]
  14. Post-translational processing of the amino terminus affects actin function. Hennessey, E.S., Drummond, D.R., Sparrow, J.C. Eur. J. Biochem. (1991) [Pubmed]
  15. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. Nongthomba, U., Clark, S., Cummins, M., Ansari, M., Stark, M., Sparrow, J.C. J. Cell. Sci. (2004) [Pubmed]
  16. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. Kulke, M., Neagoe, C., Kolmerer, B., Minajeva, A., Hinssen, H., Bullard, B., Linke, W.A. J. Cell Biol. (2001) [Pubmed]
  17. Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from Drosophila flight muscle. Charge reversal on actin changes actin-tropomyosin from on to off state. Bing, W., Razzaq, A., Sparrow, J., Marston, S. J. Biol. Chem. (1998) [Pubmed]
  18. A nonsense mutation within the act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Karlik, C.C., Coutu, M.D., Fyrberg, E.A. Cell (1984) [Pubmed]
  19. Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. Vigoreaux, J.O., Saide, J.D., Valgeirsdottir, K., Pardue, M.L. J. Cell Biol. (1993) [Pubmed]
  20. Dimerized Drosophila myosin VIIa: a processive motor. Yang, Y., Kovács, M., Sakamoto, T., Zhang, F., Kiehart, D.P., Sellers, J.R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  21. Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Prado, A., Canal, I., Barbas, J.A., Molloy, J., Ferrús, A. Mol. Biol. Cell (1995) [Pubmed]
  22. E93K charge reversal on actin perturbs steric regulation of thin filaments. Cammarato, A., Craig, R., Sparrow, J.C., Lehman, W. J. Mol. Biol. (2005) [Pubmed]
  23. Myosin VIIB from Drosophila is a high duty ratio motor. Yang, Y., Kovács, M., Xu, Q., Anderson, J.B., Sellers, J.R. J. Biol. Chem. (2005) [Pubmed]
  24. Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila. Simpson, L., Wieschaus, E. Development (1990) [Pubmed]
  25. DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo. Padash Barmchi, M., Rogers, S., Häcker, U. J. Cell Biol. (2005) [Pubmed]
  26. Alternative splicing of an amino-terminal PEVK-like region generates multiple isoforms of Drosophila projectin. Southgate, R., Ayme-Southgate, A. J. Mol. Biol. (2001) [Pubmed]
  27. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Nongthomba, U., Cummins, M., Clark, S., Vigoreaux, J.O., Sparrow, J.C. Genetics (2003) [Pubmed]
  28. Substitution of flight muscle-specific actin by human (beta)-cytoplasmic actin in the indirect flight muscle of Drosophila. Brault, V., Reedy, M.C., Sauder, U., Kammerer, R.A., Aebi, U., Schoenenberger, C. J. Cell. Sci. (1999) [Pubmed]
  29. In vitro transcription of Drosophila actin and 70,000-dalton heat shock protein genes. Nierman, W.C., Miller, A.E., Tobin, S.L., Ingolia, T.D., Sanchez, F., Rdest, U., Zulauf, E., McCarthy, B.J. J. Biol. Chem. (1983) [Pubmed]
  30. Molecular evolutionary convergence of the flight muscle protein arthrin in Diptera and hemiptera. Schmitz, S., Schankin, C.J., Prinz, H., Curwen, R.S., Ashton, P.D., Caves, L.S., Fink, R.H., Sparrow, J.C., Mayhew, P.J., Veigel, C. Mol. Biol. Evol. (2003) [Pubmed]
  31. Monitoring development and pathology of Drosophila indirect flight muscles using green fluorescent protein. Barthmaier, P., Fyrberg, E. Dev. Biol. (1995) [Pubmed]
  32. Formation of reverse rigor chevrons by myosin heads. Reedy, M.C., Beall, C., Fyrberg, E. Nature (1989) [Pubmed]
  33. Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos. Foe, V.E., Field, C.M., Odell, G.M. Development (2000) [Pubmed]
WikiGenes - Universities