Notochordal development as influenced by the insecticide dicrotophos (Bidrin).
White Leghorn chicken embryos were treated at different ages with the insecticide dicrotophos to determine the time period of maximum effect upon notochordal development. Doses of insecticide ranging from 250 micrograms to 2.0 mg were injected into eggs at 8, 16, 24, 32, 40, 48, 72, or 96 hr of incubation and the eggs allowed to incubate for an additional 48 hr. Dicrotophos treatment caused dorsoventral and lateral folding of the notochord, with the cervical region being most severely affected. Although there was no apparent difference in dose responsiveness at any one age, there was an obvious age relationship. Notochordal responsiveness, expressed as both the number and severity of folds, was low among the 8- and 16-hr treated embryos, increased to a maximum in the 48-hr treatment group, and then declined among the older embryos. The time of maximum effect correlates closely with the time of sheath deposition and vacuolization of the notochord, but not to initial formation of the notochord from the mesoblast or later extracellular matrix production by sclerotome cells. It is proposed that dicrotophos interferes with some aspect of sheath formation. The pressure exerted by the vacuolization upon a structurally weakened sheath is thought to cause the observed folding.[1]References
- Notochordal development as influenced by the insecticide dicrotophos (Bidrin). Garrison, J.C., Wyttenbach, C.R. J. Exp. Zool. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg