The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Notochord

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Notochord

 

High impact information on Notochord

  • Signals from prechordal mesoderm control the differentiation of rostral diencephalic ventral midline cells, whereas notochord induces floor plate cells caudally [6].
  • Antibodies that block Sonic Hedgehog (SHH) signaling have been used to show that SHH activity is required for the induction of floor plate differentiation by the notochord and independently for the induction of motor neurons by both the notochord and midline neural cells [7].
  • A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation [8].
  • The differentiation of dorsal cell types, therefore, appears to be initiated at the neural plate stage and to involve the opponent activities of a BMP-mediated dorsalizing signal from the epidermal ectoderm and a SHH-mediated ventralizing signal from the notochord [9].
  • The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo [10].
 

Chemical compound and disease context of Notochord

  • An ACh-synthesizing enzyme is present in the notochord, a neural tube-dorsal root ganglion preparation, as well as in rows of myotomes separated from the latter preparation [11].
 

Biological context of Notochord

  • Prior work has established that transient Shh signals from the notochord and floor plate confer a competence in somitic tissue for subsequent BMP signals to induce chondrogenesis [12].
  • The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation [13].
  • In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord [14].
  • These results suggest that Ci-trop is a direct target gene of Ci-Bra and that Brachyury plays an immediate role in the cellular morphogenesis of the notochord [15].
  • Enhancers were identified in intron 1 and 2 that mediate floor plate and notochord expression [16].
 

Anatomical context of Notochord

 

Associations of Notochord with chemical compounds

  • To test for the presence of aromatic L-amino acid decarboxylase (AADC), another CA enzyme, cultures of CGs and CGs plus notochord were incubated with levodopa and processed for the detection of CA histofluorescence [22].
  • A screen for N-ethyl-N-nitrosourea (ENU)-induced mutations affecting early development in the ascidian Ciona savignyi resulted in the isolation of a number of mutants including the complementing notochord mutants chongmague and chobi [23].
  • The formation of notochord and neural tissue in response to XTC-MIF represents a qualitative difference between this inducing factor and the other known group of MIFs, the heparin-binding growth factors [24].
  • When grafts of the epithelial layer of the DMZ of early gastrulae labelled with fluorescein dextran were transplanted to the ventral sides of unlabelled host embryos, they induced secondary axes composed of notochord, somites and posterior neural tube [25].
  • Lithium treatments performed during early or medium streak stages cause excessive development of the anterior primitive streak, node and notochord, and lead to a degeneration of prospective ventral and posterior structures, as shown by the expression of the molecular markers GSC, CNOT1, BMP2 and Ch-Tbx6L [26].
 

Gene context of Notochord

 

Analytical, diagnostic and therapeutic context of Notochord

References

  1. Molecular analysis of axon repulsion by the notochord. Anderson, C.N., Ohta, K., Quick, M.M., Fleming, A., Keynes, R., Tannahill, D. Development (2003) [Pubmed]
  2. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Greene, N.D., Gerrelli, D., Van Straaten, H.W., Copp, A.J. Mech. Dev. (1998) [Pubmed]
  3. Does chondroid chordoma exist? Brooks, J.J., LiVolsi, V.A., Trojanowski, J.Q. Acta Neuropathol. (1987) [Pubmed]
  4. S-100 protein and neuron specific enolase (NSE) expression by chordomas in relation to the composition of their stromal mucosubstances. Karabela-Bouropoulou, V., Kontogeorgos, G., Papamichales, G., Milas, C., Roessner, A., Vollmer, E., Grundmann, E. Pathol. Res. Pract. (1988) [Pubmed]
  5. Adriamycin induces notochord hypertrophy with conservation of sonic hedgehog expression in abnormal ectopic notochord in the adriamycin rat model. Mortell, A., O'Donnell, A.M., Giles, S., Bannigan, J., Puri, P. J. Pediatr. Surg. (2004) [Pubmed]
  6. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Dale, J.K., Vesque, C., Lints, T.J., Sampath, T.K., Furley, A., Dodd, J., Placzek, M. Cell (1997) [Pubmed]
  7. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Ericson, J., Morton, S., Kawakami, A., Roelink, H., Jessell, T.M. Cell (1996) [Pubmed]
  8. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Fan, C.M., Porter, J.A., Chiang, C., Chang, D.T., Beachy, P.A., Tessier-Lavigne, M. Cell (1995) [Pubmed]
  9. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Liem, K.F., Tremml, G., Roelink, H., Jessell, T.M. Cell (1995) [Pubmed]
  10. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Weinstein, D.C., Ruiz i Altaba, A., Chen, W.S., Hoodless, P., Prezioso, V.R., Jessell, T.M., Darnell, J.E. Cell (1994) [Pubmed]
  11. Alpha-bungarotoxin binding to the myotome and choline acetyltransferase activity in the rabbit embryo. Grubic, Z., Tennyson, V.M., Chang, H.W., Kremzner, L.T., Penn, A.S. J. Comp. Neurol. (1984) [Pubmed]
  12. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Zeng, L., Kempf, H., Murtaugh, L.C., Sato, M.E., Lassar, A.B. Genes Dev. (2002) [Pubmed]
  13. The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Abdelkhalek, H.B., Beckers, A., Schuster-Gossler, K., Pavlova, M.N., Burkhardt, H., Lickert, H., Rossant, J., Reinhardt, R., Schalkwyk, L.C., Müller, I., Herrmann, B.G., Ceolin, M., Rivera-Pomar, R., Gossler, A. Genes Dev. (2004) [Pubmed]
  14. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Nixon, S.J., Wegner, J., Ferguson, C., Méry, P.F., Hancock, J.F., Currie, P.D., Key, B., Westerfield, M., Parton, R.G. Hum. Mol. Genet. (2005) [Pubmed]
  15. Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. Di Gregorio, A., Levine, M. Development (1999) [Pubmed]
  16. Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. Müller, F., Chang, B., Albert, S., Fischer, N., Tora, L., Strähle, U. Development (1999) [Pubmed]
  17. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Smith, W.C., Harland, R.M. Cell (1992) [Pubmed]
  18. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Smith, J.C., Price, B.M., Green, J.B., Weigel, D., Herrmann, B.G. Cell (1991) [Pubmed]
  19. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Roelink, H., Augsburger, A., Heemskerk, J., Korzh, V., Norlin, S., Ruiz i Altaba, A., Tanabe, Y., Placzek, M., Edlund, T., Jessell, T.M. Cell (1994) [Pubmed]
  20. Brachyury downstream notochord differentiation in the ascidian embryo. Takahashi, H., Hotta, K., Erives, A., Di Gregorio, A., Zeller, R.W., Levine, M., Satoh, N. Genes Dev. (1999) [Pubmed]
  21. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Hebrok, M., Kim, S.K., Melton, D.A. Genes Dev. (1998) [Pubmed]
  22. Cholinergic neurons of the chick ciliary ganglia express adrenergic traits in vivo and in vitro. Teitelman, G., Joh, T.H., Grayson, L., Park, D.H., Reis, D.J., Iacovitti, L. J. Neurosci. (1985) [Pubmed]
  23. Mutations affecting tail and notochord development in the ascidian Ciona savignyi. Nakatani, Y., Moody, R., Smith, W.C. Development (1999) [Pubmed]
  24. Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor. Smith, J.C., Yaqoob, M., Symes, K. Development (1988) [Pubmed]
  25. The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Shih, J., Keller, R. Development (1992) [Pubmed]
  26. Nuclear beta-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. Roeser, T., Stein, S., Kessel, M. Development (1999) [Pubmed]
  27. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. McMahon, J.A., Takada, S., Zimmerman, L.B., Fan, C.M., Harland, R.M., McMahon, A.P. Genes Dev. (1998) [Pubmed]
  28. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. Aszódi, A., Chan, D., Hunziker, E., Bateman, J.F., Fässler, R. J. Cell Biol. (1998) [Pubmed]
  29. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Lettice, L.A., Purdie, L.A., Carlson, G.J., Kilanowski, F., Dorin, J., Hill, R.E. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  30. A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Koseki, H., Wallin, J., Wilting, J., Mizutani, Y., Kispert, A., Ebensperger, C., Herrmann, B.G., Christ, B., Balling, R. Development (1993) [Pubmed]
  31. Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. Ridgway, P., Brown, K.D., Rangasamy, D., Svensson, U., Tremethick, D.J. J. Biol. Chem. (2004) [Pubmed]
  32. The biochemically and immunologically distinct CSPG of notochord is a product of the aggrecan gene. Domowicz, M., Li, H., Hennig, A., Henry, J., Vertel, B.M., Schwartz, N.B. Dev. Biol. (1995) [Pubmed]
  33. Fibroblast growth factor receptor 1 in skeletal and heart muscle cells: expression during early avian development and regulation after notochord transplantation. Grothe, C., Brand-Saberi, B., Wilting, J., Christ, B. Dev. Dyn. (1996) [Pubmed]
  34. Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Everett, A.D. Dev. Dyn. (2001) [Pubmed]
  35. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Newgreen, D., Thiery, J.P. Cell Tissue Res. (1980) [Pubmed]
 
WikiGenes - Universities