The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles.

Partition (K) and permeance (P) coefficients have been determined for phenol, 2-nitrophenol, and 4-nitrophenol with isolated cuticles from mature tomato (Lycopersicon) and green pepper (Capsicum) fruits and from the adaxial surface of rubber (Ficus) leaves. Plant cuticular membranes (CM) are composed of a lipophilic, insoluble polymer matrix (MX) membrane and soluble cuticular lipids (SCL). Partition coefficients of the phenols (pH 3.0) for the system MX/buffer (MX/b) ranged from 43.6 to 164.9 and could be predicted from n-octanol/buffer (o/b) partition coefficients using the equation log KMX/b = 0.363 + 0.952 log Ko/b where (r = 0.986). In CM the K values were lower, especially for 4-nitrophenol, ranging from 32.4 to 110. 8. The role of hydrogen bonding in partitioning of phenols into cuticles is discussed. Permeance coefficients for the cuticular membranes [P(CM)] ranged from 10(-10) (Ficus) to 10(-8) m sec-1 (Lycopersicon, Capsicum), with 2-nitrophenol permeating more rapidly than the other two phenols. Extraction of the SCL increased the permeance coefficients [P(MX)] by factors of approximately 5 (Lycopersicon), 50 (Capsicum), and 1000 (Ficus), respectively. The transport-limiting layer in plant cuticles acts as a diffusion and solubility barrier.[1]

References

  1. Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles. Shafer, W.E., Schönherr, J. Ecotoxicol. Environ. Saf. (1985) [Pubmed]
 
WikiGenes - Universities