The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Highly selective photoaffinity labeling of mu and delta opioid receptors.

We report the synthesis and photolabeling properties of two highly selective ligands for mu and delta opioid-binding sites: Tyr-D-Ala-Gly-MePhe (pN3)-Gly-ol (AZ-DAMGE) and Tyr-D-Thr-Gly-Phe (pN3)-Leu-Thr (AZ-DTLET). An irreversible inhibition of the electrically induced contractions of mouse vas deferens is caused by irradiation (at 254 nm) of the muscle strip in the presence of AZ-DTLET (1 nM). This phenomenon is antagonized only at large concentrations (10 microM) of naloxone, in accordance with the well-known lower selectivity of naloxone for delta sites. Competition experiments with [3H]DAMGE and [3H]DTLET on crude rat brain membranes showed that the azido photoprobes display a similar (AZ-DAMGE) and even a better (AZ-DTLET) selectivity than their respective parent compounds DAMGE and DTLET. Up to 25 nM, AZ-DTLET irreversibly and selectively photolabels the delta sites of crude rat brain homogenates. Due to its lower affinity AZ-DAMGE provides similar selective photolabeling of the mu sites but at higher concentrations (approximately equal to 0.3 microM). When [3H]DAMGE and [3H]DTLET were used as ligands for mu and delta binding subtypes, respectively, no important change in binding capacity and affinity of one receptor type was observed after photolabeling of the other.[1]

References

  1. Highly selective photoaffinity labeling of mu and delta opioid receptors. Garbay-Jaureguiberry, C., Robichon, A., Daugé, V., Rossignol, P., Roques, B.P. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
 
WikiGenes - Universities