The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The reaction of 8-mercaptoflavins and flavoproteins with sulfite. Evidence for the role of an active site arginine in D-amino acid oxidase.

This work presents strong evidence that the role of the active site arginine in D-amino acid oxidase is to act as a positively charged group interacting with the flavin N(1)-C(2) = 0 locus. Modification with cyclohexanedione, which has been shown previously to modify specifically an active site arginine in D-amino acid oxidase (Ferti, C., Curti, B., Simonetta, M. P., Ronchi, S., Galliano, M., and Minchiotti, L. (1981) Eur. J. Biochem. 119, 553-557) destroys the ability of D-amino acid oxidase to stabilize the benzoquinoid type spectrum of 8-mercapto-FAD and destroys the ability to form a flavin N-5 adduct with sulfite. Both of these properties have been attributed to the presence of such a group. The active site lysine, histidine, and tyrosine have been ruled out as possibilities for such a group. In addition, the reactivity of flavoproteins containing 8-mercaptoflavin with sulfite has been examined and falls into the same two general classes as the reactivity of the native flavoproteins: oxidases form N-5 adducts while all of the other 8-mercaptoflavoproteins examined do not, forming instead the 8-sulfonate flavin.[1]

References

 
WikiGenes - Universities