Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor.
Endotoxin-stimulated macrophages hydrolyze fibrin by a plasmin-mediated process in the absence of detectable soluble plasminogen activator (PAs). The data show that macrophages also activate plasmin by a membrane-associated plasminogen activator (PAm). In the presence of endotoxin, PAm activity increases, and plasmin is formed only by PAm. In addition, endotoxin stimulates macrophages to secrete a proteinase inhibitor that blocks PAs activity but not PAm or plasmin activity. The increased PAm activity and the PA inhibitor secretion in response to endotoxin explains the ability of intact macrophages to hydrolyze fibrin in the absence of detectable PAs. Endotoxin, 100 ng/ml, induced an intracellular PA inhibitor in cultured macrophages, and this correlated with accumulation of inhibitor in medium over the cells. The intracellular PA inhibitor was found to be 50--60 kilodaltons by gel chromatography, to be of anionic charge at pH 7.4 and to inhibit urokinase esterolytic and proteolytic activity but not preformed plasmin. These results define two pathways of plasmin formation by intact macrophages and identify the macrophage cell surface as a site of PA activity relatively protected from soluble proteinase inhibitors.[1]References
- Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Chapman, H.A., Vavrin, Z., Hibbs, J.B. Cell (1982) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg