The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ERVK-6  -  endogenous retrovirus group K, member 6

Homo sapiens

Synonyms: ERVK6, HERV-K(C7), HERV-K(HML-2.HOM), HERV-K108, K-Rev, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ERVK6


Psychiatry related information on ERVK6


High impact information on ERVK6


Chemical compound and disease context of ERVK6


Biological context of ERVK6

  • Recently, we reported an almost intact human endogenous retrovirus (HERV-K(HML-2.HOM); HGMW-approved symbol ERVK6) located on human chromosome 7, with open reading frames for all retroviral genes and a mutation only within the reverse transcriptase [1].
  • Thus, cORF of human endogenous retroviruses may contribute to tumor development by interfering with processes during spermatogenesis that involve PLZF [20].
  • A doubly spliced transcript encodes a short open reading frame, preliminarily designated cORF (R. Löwer, K. Boller, B. Hasenmeier, C. Korbmacher, N. Mueller-Lantzsch, J. Löwer, and R. Kurth, Proc. Natl. Acad. Sci. USA 90:4480-4484) [5].
  • Accordingly, we have given the element the designation RcRE. cORF and RcRE stabilize unspliced and incompletely spliced viral transcripts and enhance their nuclear export via the CRM1 export pathway [21].
  • In transfection experiments, HERV-K(C7) and HERV-K cDNA-based expression vectors yielded the proteins Gag and cORF whereas HERV-K10 vectors yielded Gag alone [22].

Anatomical context of ERVK6


Associations of ERVK6 with chemical compounds

  • Cells were fixed with a mixture of formaldehyde and glutaraldehyde, dehydrated in ethanol with progressive lowering of temperature and embedded in Lowicryl K4M or HM20 at -35 degrees C. Permeabilization or pre-treatment of sections with proteinase K was not essential [26].
  • Extensively purified preparations of prions were denatured by boiling in sodium dodecyl sulfate and the major protein component (PrP 27-30) was isolated by preparative HPLC size exclusion chromatography after proteinase K digestion [27].
  • Human tryptase, a mast-cell-specific serine proteinase that may be involved in causing asthma and other allergic and inflammatory disorders, is unique in two respects: it is enzymatically active only as a heparin-stabilized tetramer, and it is resistant to all known endogenous proteinase inhibitors [28].
  • The cysteine proteinase produced by group A streptococci was isolated and found to be inhibited by Z-LVG-CHN2; moreover, excess proteinase relieved the growth inhibition caused by the peptide derivative, suggesting that the antibacterial activity of Z-LVG-CHN2 is due to inhibition of this cysteine proteinase [29].
  • Thus, tryptase inhibitors and antagonists of proteinase-activated receptor 2 may be useful anti-inflammatory agents [19].

Physical interactions of ERVK6

  • In contrast, the lipopeptide remaining after proteinase K digestion both formed a complex with CD14 and retained stimulatory properties [30].
  • The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M [31].
  • Here we have investigated the reactive site of TIMP-1 by its proteinase susceptibility before and after forming a complex with MMP-3 (stromelysin 1) [32].
  • Alpha 2M interacts and captures virtually any proteinase whether self or foreign, suggesting a function as a unique "panproteinase inhibitor." Activation of alpha 2M generates novel binding sites, which mediate complex formation with cytokines and other peptides [33].
  • The dissociation equilibrium constant for heparin binding to antithrombin III (ATIII) is a measure of the cofactor's binding to and activation of the proteinase inhibitor, and its salt dependence indicates that ionic and non-ionic interactions contribute approximately 40 and approximately 60% of the binding free energy, respectively [34].

Enzymatic interactions of ERVK6

  • The large membrane-bound precursor protein (APP) of beta-AP is normally cleaved within the beta-AP region by a putative proteinase (APP secretase) to release its extracellular portion; beta-AP is produced by an alternative proteolytic processing [35].
  • Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase [36].
  • This IGF-regulated loss of IGFBP-4 was inhibited by metalloproteinase inhibitors and appeared to be due to a proteinase that cleaved IGFBP-4 in 18 and 14 kD fragments identified by western immunoblotting [37].
  • The N-terminal cleavage of PrP in GSS disease occurs at a tryptophan-glycine peptide bond identical to that cleaved by proteinase K in vitro to generate PrP 27-30 from hamster PrPSc at codon 90 [38].
  • The VWF-cleaving proteinase activity of the truncated enzyme was comparable to that of the wild-type enzyme but its secretion from transfected COS-7 cells was about 14% of the wild type [39].

Co-localisations of ERVK6

  • By means of zymography, we demonstrated, for the first time, that RNase activity persists after dissociation of the proteasome on the gel and that it co-localizes to the same range of molecular weight subunits as the proteinase activity [40].

Regulatory relationships of ERVK6

  • In addition, the 14-kDa cORF protein was expressed due to splicing of the full-length env mRNA [41].
  • Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets [42].
  • We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase [43].
  • We have prepared the proform of the catalytic domain of the MT1-MMP and demonstrated that this may be activated in vitro by trypsin proteolysis to yield a functional proteinase capable of cleaving typical metalloproteinase peptide substrates, gelatin and casein [44].
  • When full-length Asp1(D110N) was expressed in COS-7 cells, it was not processed, suggesting that no other proteinase can activate Asp1 in these cells [45].

Other interactions of ERVK6


Analytical, diagnostic and therapeutic context of ERVK6

  • Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM [47].
  • HIV-1 primary isolates and three different sets of recombinant viruses [i.e. recombinant clones carrying protease (PR), reverse transcriptase (RT) or the 3' end of Gag, PR and RT (3'Gag/PR/RT), sequences amplified by PCR from the same primary isolates)] were evaluated [48].
  • METHODS: We analyzed HERV-K(HML-2) expression on the mRNA and protein level by RT-PCR analysis and immunofluorescence labeling of the HERV-K(HML-2) Rec (formerly cORF) protein [49].
  • Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response [50].
  • After digestion of urines with proteinase K, three more HPLC peaks appeared, which all corresponded to SA-Lys adducts [51].


  1. Genomic organization of the human endogenous retrovirus HERV-K(HML-2.HOM) (ERVK6) on chromosome 7. Reus, K., Mayer, J., Sauter, M., Scherer, D., Müller-Lantzsch, N., Meese, E. Genomics (2001) [Pubmed]
  2. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Yang, J., Bogerd, H.P., Peng, S., Wiegand, H., Truant, R., Cullen, B.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  3. The 5' RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. Butsch, M., Hull, S., Wang, Y., Roberts, T.M., Boris-Lawrie, K. J. Virol. (1999) [Pubmed]
  4. Mutational definition of functional domains within the Rev homolog encoded by human endogenous retrovirus K. Bogerd, H.P., Wiegand, H.L., Yang, J., Cullen, B.R. J. Virol. (2000) [Pubmed]
  5. Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. Löwer, R., Tönjes, R.R., Korbmacher, C., Kurth, R., Löwer, J. J. Virol. (1995) [Pubmed]
  6. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. Medori, R., Tritschler, H.J., LeBlanc, A., Villare, F., Manetto, V., Chen, H.Y., Xue, R., Leal, S., Montagna, P., Cortelli, P. N. Engl. J. Med. (1992) [Pubmed]
  7. In search of an enzyme: the beta-secretase of Alzheimer's disease is an aspartic proteinase. Howlett, D.R., Simmons, D.L., Dingwall, C., Christie, G. Trends Neurosci. (2000) [Pubmed]
  8. Incidence and disease associations of a proteinase 3-antineutrophil cytoplasmic antibody idiotype (5/7 Id) whose antiidiotype inhibits proteinase 3-antineutrophil cytoplasmic antibody antigen binding activity. Strunz, H.P., Csernok, E., Gross, W.L. Arthritis Rheum. (1997) [Pubmed]
  9. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Caughey, B., Kocisko, D.A., Raymond, G.J., Lansbury, P.T. Chem. Biol. (1995) [Pubmed]
  10. A new selective substrate for cathepsin E based on the cleavage site sequence of alpha2-macroglobulin. Yasuda, Y., Kohmura, K., Kadowaki, T., Tsukuba, T., Yamamoto, K. Biol. Chem. (2005) [Pubmed]
  11. The retroviral enzymes. Katz, R.A., Skalka, A.M. Annu. Rev. Biochem. (1994) [Pubmed]
  12. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Roosterman, D., Goerge, T., Schneider, S.W., Bunnett, N.W., Steinhoff, M. Physiol. Rev. (2006) [Pubmed]
  13. ATP is required for in vitro assembly of MHC class I antigens but not for transfer of peptides across the ER membrane. Lévy, F., Gabathuler, R., Larsson, R., Kvist, S. Cell (1991) [Pubmed]
  14. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Mignatti, P., Robbins, E., Rifkin, D.B. Cell (1986) [Pubmed]
  15. A protease-resistant protein is a structural component of the scrapie prion. McKinley, M.P., Bolton, D.C., Prusiner, S.B. Cell (1983) [Pubmed]
  16. The effect of cerulenin on the synthesis of the precursor gag polyprotein in defective murine leukemia and sarcoma virus producing cell lines. Ikuta, K., Coward, J., Luftig, R.B. Virology (1986) [Pubmed]
  17. Effect of a human immunodeficiency virus protease inhibitor on human monocyte function. Bugelski, P.J., Kaplan, J.M., Hart, T.K., Miller, J., Laydon, J.T., Lee, J.C., Dreyer, G.B., Kirsh, R. AIDS Res. Hum. Retroviruses (1992) [Pubmed]
  18. Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Katoh, I., Yasunaga, T., Ikawa, Y., Yoshinaka, Y. Nature (1987) [Pubmed]
  19. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Steinhoff, M., Vergnolle, N., Young, S.H., Tognetto, M., Amadesi, S., Ennes, H.S., Trevisani, M., Hollenberg, M.D., Wallace, J.L., Caughey, G.H., Mitchell, S.E., Williams, L.M., Geppetti, P., Mayer, E.A., Bunnett, N.W. Nat. Med. (2000) [Pubmed]
  20. Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Boese, A., Sauter, M., Galli, U., Best, B., Herbst, H., Mayer, J., Kremmer, E., Roemer, K., Mueller-Lantzsch, N. Oncogene (2000) [Pubmed]
  21. cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. Magin, C., Löwer, R., Löwer, J. J. Virol. (1999) [Pubmed]
  22. Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. Tönjes, R.R., Czauderna, F., Kurth, R. J. Virol. (1999) [Pubmed]
  23. Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/PR proteins. McGuire, T.C., Tumas, D.B., Byrne, K.M., Hines, M.T., Leib, S.R., Brassfield, A.L., O'Rourke, K.I., Perryman, L.E. J. Virol. (1994) [Pubmed]
  24. Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Chapman, H.A., Vavrin, Z., Hibbs, J.B. Cell (1982) [Pubmed]
  25. EGTA and proteinase reversal of cellular aggregation of activated lymphocytes. Neely, A.N., Sitzmann, J.V., Kersey, J.H. Nature (1976) [Pubmed]
  26. Ultrastructural localization of the RNA of immunodeficiency viruses using electron microscopy in situ hybridization and in vitroinfected lymphocytes. Cantó-Nogués, C., Hockley, D., Grief, C., Ranjbar, S., Bootman, J., Almond, N., Herrera, I. Micron (2001) [Pubmed]
  27. Purification and structural studies of a major scrapie prion protein. Prusiner, S.B., Groth, D.F., Bolton, D.C., Kent, S.B., Hood, L.E. Cell (1984) [Pubmed]
  28. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Pereira, P.J., Bergner, A., Macedo-Ribeiro, S., Huber, R., Matschiner, G., Fritz, H., Sommerhoff, C.P., Bode, W. Nature (1998) [Pubmed]
  29. Bacterial growth blocked by a synthetic peptide based on the structure of a human proteinase inhibitor. Björck, L., Akesson, P., Bohus, M., Trojnar, J., Abrahamson, M., Olafsson, I., Grubb, A. Nature (1989) [Pubmed]
  30. The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi. Wooten, R.M., Morrison, T.B., Weis, J.H., Wright, S.D., Thieringer, R., Weis, J.J. J. Immunol. (1998) [Pubmed]
  31. Pregnancy zone protein, a proteinase-binding macroglobulin. Interactions with proteinases and methylamine. Christensen, U., Simonsen, M., Harrit, N., Sottrup-Jensen, L. Biochemistry (1989) [Pubmed]
  32. Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). Nagase, H., Suzuki, K., Cawston, T.E., Brew, K. Biochem. J. (1997) [Pubmed]
  33. Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. Borth, W. FASEB J. (1992) [Pubmed]
  34. Antithrombin III phenylalanines 122 and 121 contribute to its high affinity for heparin and its conformational activation. Jairajpuri, M.A., Lu, A., Desai, U., Olson, S.T., Bjork, I., Bock, S.C. J. Biol. Chem. (2003) [Pubmed]
  35. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Miyazaki, K., Hasegawa, M., Funahashi, K., Umeda, M. Nature (1993) [Pubmed]
  36. Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase. Cao, J., Rehemtulla, A., Pavlaki, M., Kozarekar, P., Chiarelli, C. J. Biol. Chem. (2005) [Pubmed]
  37. Regulation of insulin-like growth factor binding protein 4 by a specific insulin-like growth factor binding protein 4 proteinase in normal human osteoblast-like cells: implications in bone cell physiology. Durham, S.K., Kiefer, M.C., Riggs, B.L., Conover, C.A. J. Bone Miner. Res. (1994) [Pubmed]
  38. Amyloid protein of Gerstmann-Sträussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. Tagliavini, F., Prelli, F., Ghiso, J., Bugiani, O., Serban, D., Prusiner, S.B., Farlow, M.R., Ghetti, B., Frangione, B. EMBO J. (1991) [Pubmed]
  39. Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Pimanda, J.E., Maekawa, A., Wind, T., Paxton, J., Chesterman, C.N., Hogg, P.J. Blood (2004) [Pubmed]
  40. Proteasomal RNase activity in human epidermis. Horikoshi, T., Page, J., Lei, G., Brysk, H., Arany, I., Tyring, S.K., Brysk, M.M. In Vivo (1998) [Pubmed]
  41. Expression of human endogenous retrovirus type K envelope glycoprotein in insect and mammalian cells. Tönjes, R.R., Limbach, C., Löwer, R., Kurth, R. J. Virol. (1997) [Pubmed]
  42. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Ma, L., Perini, R., McKnight, W., Dicay, M., Klein, A., Hollenberg, M.D., Wallace, J.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  43. TNF-Induced shedding of TNF receptors in human polymorphonuclear leukocytes: role of the 55-kDa TNF receptor and involvement of a membrane-bound and non-matrix metalloproteinase. Dri, P., Gasparini, C., Menegazzi, R., Cramer, R., Albéri, L., Presani, G., Garbisa, S., Patriarca, P. J. Immunol. (2000) [Pubmed]
  44. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. Will, H., Atkinson, S.J., Butler, G.S., Smith, B., Murphy, G. J. Biol. Chem. (1996) [Pubmed]
  45. Prodomain processing of Asp1 (BACE2) is autocatalytic. Hussain, I., Christie, G., Schneider, K., Moore, S., Dingwall, C. J. Biol. Chem. (2001) [Pubmed]
  46. Polymerase chain reaction selects a novel disintegrin proteinase from CD40-activated germinal center dendritic cells. Mueller, C.G., Rissoan, M.C., Salinas, B., Ait-Yahia, S., Ravel, O., Bridon, J.M., Briere, F., Lebecque, S., Liu, Y.J. J. Exp. Med. (1997) [Pubmed]
  47. Cleavage of the murine leukemia virus transmembrane env protein by human immunodeficiency virus type 1 protease: transdominant inhibition by matrix mutations. Kiernan, R.E., Freed, E.O. J. Virol. (1998) [Pubmed]
  48. A novel TaqMan real-time PCR assay to estimate ex vivo human immunodeficiency virus type 1 fitness in the era of multi-target (pol and env) antiretroviral therapy. Weber, J., Rangel, H.R., Chakraborty, B., Tadele, M., Martinez, M.A., Martinez-Picado, J., Marotta, M.L., Mirza, M., Ruiz, L., Clotet, B., Wrin, T., Petropoulos, C.J., Quiñones-Mateu, M.E. J. Gen. Virol. (2003) [Pubmed]
  49. Human endogenous retrovirus HERV-K(HML-2) Rec expression and transcriptional activities in normal and rheumatoid arthritis synovia. Ehlhardt, S., Seifert, M., Schneider, J., Ojak, A., Zang, K.D., Mehraein, Y. J. Rheumatol. (2006) [Pubmed]
  50. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T.A., Hollenberg, M.D. Endocr. Rev. (2005) [Pubmed]
  51. Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. Manabe, S., Sassa, S., Kappas, A. J. Exp. Med. (1985) [Pubmed]
WikiGenes - Universities