Pyrimidine dimer formation and repair in human skin.
Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythemal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococcus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidium bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. M. luteus endonuclease-sensitive sites were determined after exposure of untanned skin in two volunteers to UV light (0.97, 1.94, or 3.88 X 10(3) J/sq m; lambda, 290 to 360 nm). At 20 min postirradiation (dose, 1.94 X 10(3) J/sq m), fewer M. luteus endonuclease-sensitive sites were found in the DNA than immediately after the irradiation. Even fewer endonuclease-sensitive sites were found at 20 min when the UV-irradiated skin was subsequently irradiated with visible light than when the area was kept in the dark. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process.[1]References
- Pyrimidine dimer formation and repair in human skin. Sutherland, B.M., Harber, L.C., Kochevar, I.E. Cancer Res. (1980) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg