The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kappa- and delta-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release.

At least three different families of endogenous opioid peptides, the enkephalins, endorphins and dynorphins, are present in the mammalian central nervous system (CNS). Immunocytochemical studies have demonstrated their localization in neurones, which supports the view that these peptides may have a role as neurotransmitter or neuromodulators. However, the target cells and cellular processes acted upon by the opioid peptides are still largely unknown. One possible function of neuropeptides, including the opioid peptides, may be presynaptic modulation of neurotransmission in certain neuronal pathways, for example, by inhibition or promotion of neurotransmitter release from the nerve terminals. Here we report that dynorphin and some benzomorphans potently and selectively inhibit the release of (radiolabelled) dopamine from slices of rat corpus striatum, by activating kappa-opioid receptors. In contrast, [Leu5]enkephalin and [D-Ala2, D-Leu5]enkephalin selectively inhibit acetylcholine release by activating delta-opioid receptors.[1]

References

  1. Kappa- and delta-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Mulder, A.H., Wardeh, G., Hogenboom, F., Frankhuyzen, A.L. Nature (1984) [Pubmed]
 
WikiGenes - Universities