The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of dihydrofolate reductase from bacterial and vertebrate sources by folate, aminopterin, methotrexate and their 5-deaza analogues.

The inhibition of dihydrofolate reductases from Escherichia coli and chicken liver by folate, methotrexate, aminopterin and their 5-deaza analogues was investigated to examine the importance of the N-5 nitrogen in slow-binding inhibition. Methotrexate, aminopterin and their 5-deaza analogues acted as slow, tight-binding inhibitors of both enzymes. Inhibition by methotrexate and 5-deazamethotrexate conformed to a mechanism in which there is an initial rapid formation of an enzyme-NADPH-inhibitor complex followed by a slow isomerization of this complex (Mechanism B). Aminopterin exhibited the same type of inhibition with the enzyme from E. coli. With the chicken-liver enzyme, however, the inhibition by aminopterin conformed to another type of slow-binding mechanism which involves only the slow interaction of the inhibitor with the enzyme to form an enzyme-NADPH-inhibitor complex (Mechanism A). The inhibition of both enzymes by 5-deazaaminopterin was also described by Mechanism A. Folate behaved as a classical, steady-state inhibitor of both enzymes, whereas 5-deazafolate exhibited slow-binding inhibition (Mechanism B) with the enzyme from E. coli and classical, steady-state inhibition with the enzyme from chicken liver. The substitution of a carbon for a nitrogen at the 5-position of methotrexate and aminopterin did not affect the tightness of binding of these compounds. By contrast, 5-deazafolate was bound about 4000 times more tightly than folate to the enzyme from E. coli and about 30 times more tightly than folate to the chicken-liver enzyme. Reasons for the differences in the binding of folate and 5-deazafolate are discussed.[1]

References

 
WikiGenes - Universities