Determination of the metabolic origins of the sulfur and 3'-nitrogen atoms in biotin of Escherichia coli by mass spectrometry.
Two steps in the biosynthesis of biotin in Escherichia coli, incorporation of the nitrogen atom of methionine into 7-keto-8-aminopelargonic acid and of the sulfur atom into dethiobiotin, were examined. Sulfur and nitrogen metabolism were monitored by gas chromatography-mass spectrometry of volatile derivatives of internal (protein-bound) amino acids and excreted biotin. We were able to show that internal cysteine and excreted biotin were labeled to the same extent with 34S from either of two exogenous sulfur sources, 34SO4(2)-or L-[sulfane-34S]thiocystine. Internal methionine was eliminated from consideration, while cysteine, or possibly a closely related intermediate, was implicated as providing the sulfur atom for biotin biosynthesis. Also, in experiments designed to follow the metabolism of the nitrogen atom of methionine, it was found that biotin excreted into the culture medium by this organism grown with 95 atom % [15N]methionine contained greater than 70 atom % excess 15N in one of the nitrogens over that obtained from cultures grown with methionine of natural abundance 15N. These results provide evidence for the direct transfer of the methionine nitrogen as the role of S-adenosylmethionine in the conversion of 7-keto-8-aminopelargonic acid to 7,8-diaminopelargonic acid.[1]References
- Determination of the metabolic origins of the sulfur and 3'-nitrogen atoms in biotin of Escherichia coli by mass spectrometry. DeMoll, E., White, R.H., Shive, W. Biochemistry (1984) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg