The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.

Anaerobic growth of Escherichia coli on L-fucose or L-rhamnose as the sole source of carbon and energy depends on the regeneration of NAD from NADH by disposing the intermediate L-lactaldehyde as L-1,2-propanediol. The two parallel pathways, with their own permeases and enzymes encoded by two widely separated gene clusters, appear to share a single enzyme that catalyzes the formation of L-1,2-propanediol. Although this oxidoreductase is encoded by a gene at the fuc locus, the enzyme is inducible by both L-fucose and L-rhamnose. The inducibility by L-rhamnose is controlled by a gene at the rha locus with no other known functions, since the aerobic growth rate on L-rhamnose remains normal. L-1,2-Propanediol oxidoreductase activity is inducible only anaerobically, and the effect of the two methylpentoses operates at different levels: L-fucose exerts its influence post-transcriptionally; L-rhamnose exerts its influence transcriptionally.[1]

References

 
WikiGenes - Universities