The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Locaose     (2R,3R,4S,5S)-2,3,4,5- tetrahydroxyhexanal

Synonyms: Isodulcitol, L-rhamnose, L-Rha, Rhamnose, L-, Rhamnose (VAN), ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of rhamnose


High impact information on rhamnose

  • This response was dependent on an optimal cell density (2 X 10(6) cells/ml), on the presence of antigen, it was specific and cross-reactive due to a shared rhamnose backbone of the two polysaccharide antigens, and it was highly selective, such that in a 42-55-day culture 1 out of 20 viable cells was a specific PFC [6].
  • METHODS: Twenty-six patients undergoing coronary artery bypass grafting underwent an intestinal absorption-permeability test involving ingestion of 3-O-methyl-D-glucose, D-xylose, L-rhamnose, and lactulose [7].
  • It is postulated that reduced L-rhamnose urinary excretion in untreated villous atrophy is due to a decreased absorptive area in the small bowel, whereas increased lactulose excretion indicates leakiness of the abnormal mucosa to larger polar molecules [8].
  • Deoxythymidine diphosphate (dTDP)-L-rhamnose is the precursor of L-rhamnose, a saccharide required for the virulence of some pathogenic bacteria. dTDP-L-rhamnose is synthesized from glucose-1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway involving four distinct enzymes [9].
  • Glycosidase treatment or acid hydrolysis of HIF released only L-rhamnose, the hexose isomer found in ouabain, as detected by chiral GC/MS [10].

Chemical compound and disease context of rhamnose


Biological context of rhamnose

  • In the absence of 3-O-methylation, further methylation of GPL rhamnose is apparently inhibited, and overall GPL synthesis is down-regulated by 90% [15].
  • L-rhamnose is an essential component of the cell wall and plays roles in mediating virulence and adhesion to host tissues in many microorganisms [16].
  • The most effective saccharide in the hemagglutination inhibition assay for both STL1 and STL2 was L-rhamnose [17].
  • These derivatives were formed through reductive amination of p-nitrophenyltriazene (NPT) ethylenediamine to the periodate-oxidized rhamnose moiety of ouabain [18].
  • In this phytopathogenic bacterial species, RhaS positively regulates the transcription of the rhaBAD operon, involved in rhamnose catabolism, of the rhiE gene and of the rhiTN operon [19].

Anatomical context of rhamnose


Associations of rhamnose with other chemical compounds

  • There was 85.4%, 85.5%, and 73.6% reduction (P < 0.01) in active (3-O-methyl-D-glucose) and passive (D-xylose) carrier-mediated transport and passive, nonmediated transcellular (L-rhamnose) transport in the immediate postoperative period, respectively [7].
  • In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D [25].
  • Residents in tropical areas had a higher mean lactulose:rhamnose ratio and lower mean five hour recoveries of 3-0-methyl-D-glucose, D-xylose, and L-rhamnose, indicating higher intestinal permeability and lower absorptive capacity [26].
  • The transcription activator VirF is a member of a new family of regulators including those of the arabinose and rhamnose operons as well as a regulator of enteric colonization pili [27].
  • The effect of altering O-antigen chain length on S. flexneri virulence was investigated by inserting a kanamycin (Km)-resistance cassette into the rol gene (controlling the modal O-antigen chain length distribution), and into the rfbD gene, whose product is needed for synthesis of dTDP-rhamnose (the precursor of rhamnose in the O-antigen) [28].

Gene context of rhamnose


Analytical, diagnostic and therapeutic context of rhamnose


  1. Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. Tate, C.G., Muiry, J.A., Henderson, P.J. J. Biol. Chem. (1992) [Pubmed]
  2. Splenectomy attenuates streptococcal cell wall-induced arthritis and alters leukocyte activation. Kimpel, D., Dayton, T., Fuseler, J., Gray, L., Kannan, K., Wolf, R.E., Grisham, M. Arthritis Rheum. (2003) [Pubmed]
  3. Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. Erickson, P.R., Herzberg, M.C. J. Biol. Chem. (1993) [Pubmed]
  4. Deoxysugar methylation during biosynthesis of the antitumor polyketide elloramycin by Streptomyces olivaceus. Characterization of three methyltransferase genes. Patallo, E.P., Blanco, G., Fischer, C., Brana, A.F., Rohr, J., Mendez, C., Salas, J.A. J. Biol. Chem. (2001) [Pubmed]
  5. Membrane topology of the L-rhamnose-H+ transport protein (RhaT) from enterobacteria. Tate, C.G., Henderson, P.J. J. Biol. Chem. (1993) [Pubmed]
  6. Antibody response of rabbit blood lymphocytes in vitro. Kinetics, clone size, and clonotype analysis in response to streptococcal group polysaccharide antigens. Braun, D.G., Quintáns, J., Luzzati, A.L., Lefkovits, I., Read, S.E. J. Exp. Med. (1976) [Pubmed]
  7. The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Ohri, S.K., Somasundaram, S., Koak, Y., Macpherson, A., Keogh, B.E., Taylor, K.M., Menzies, I.S., Bjarnason, I. Gastroenterology (1994) [Pubmed]
  8. Abnormal intestinal permeability to sugars in villous atrophy. Menzies, I.S., Laker, M.F., Pounder, R., Bull, J., Heyer, S., Wheeler, P.G., Creamer, B. Lancet (1979) [Pubmed]
  9. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Giraud, M.F., Leonard, G.A., Field, R.A., Berlind, C., Naismith, J.H. Nat. Struct. Biol. (2000) [Pubmed]
  10. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Tymiak, A.A., Norman, J.A., Bolgar, M., DiDonato, G.C., Lee, H., Parker, W.L., Lo, L.C., Berova, N., Nakanishi, K., Haber, E. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. beta-D-Glucose 1-phosphate. A structural unit and an immunological determinant of a glycan from streptococcal cell walls. Pazur, J.H. J. Biol. Chem. (1982) [Pubmed]
  12. A novel NDP-6-deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-D-fucose. Yoshida, Y., Nakano, Y., Nezu, T., Yamashita, Y., Koga, T. J. Biol. Chem. (1999) [Pubmed]
  13. Increased intestinal permeability in rats with graft versus host disease. Koltun, W.A., Bloomer, M.M., Colony, P., Kauffman, G.L. Gut (1996) [Pubmed]
  14. Intestinal permeability in patients with Crohn's disease and their first degree relatives. Teahon, K., Smethurst, P., Levi, A.J., Menzies, I.S., Bjarnason, I. Gut (1992) [Pubmed]
  15. Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. Patterson, J.H., McConville, M.J., Haites, R.E., Coppel, R.L., Billman-Jacobe, H. J. Biol. Chem. (2000) [Pubmed]
  16. Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Zhang, Z., Tsujimura, M., Akutsu, J., Sasaki, M., Tajima, H., Kawarabayasi, Y. J. Biol. Chem. (2005) [Pubmed]
  17. Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily. Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M. J. Biol. Chem. (1998) [Pubmed]
  18. Affinity labeling of the digitalis receptor with p-nitrophenyltriazene-ouabain, a highly specific alkylating agent. Rossi, B., Vuilleumier, P., Gache, C., Balerna, M., Lazdunski, M. J. Biol. Chem. (1980) [Pubmed]
  19. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism. Hugouvieux-Cotte-Pattat, N. Mol. Microbiol. (2004) [Pubmed]
  20. Effects of anthracycline therapy on intestinal absorption in patients with advanced breast cancer. Parrilli, G., Iaffaioli, R.V., Martorano, M., Cuomo, R., Tafuto, S., Zampino, M.G., Budillon, G., Bianco, A.R. Cancer Res. (1989) [Pubmed]
  21. Stimulated rat T cell-derived inhibitory factor for cellular DNA synthesis (STIF). III. Effect on cell proliferation and immune responses. Chiba, K., Nishimura, T., Hashimoto, Y. J. Immunol. (1985) [Pubmed]
  22. Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. Sprott, G.D., Shaw, K.M., Jarrell, K.F. J. Biol. Chem. (1983) [Pubmed]
  23. Characterization of a soluble suppressor of human B cell function produced by a continuous human suppressor T cell line. II. Evidence for suppression through a direct action of CTC-SISS-B on human B cells. Greene, W.C., Fleisher, T.A., Depper, J.M., Leonard, W.J., Stanton, G.J., Waldmann, T.A. J. Immunol. (1982) [Pubmed]
  24. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release. Soell, M., Lett, E., Holveck, F., Schöller, M., Wachsmann, D., Klein, J.P. J. Immunol. (1995) [Pubmed]
  25. Structure of a streptococcal adhesin carbohydrate receptor. Cassels, F.J., Fales, H.M., London, J., Carlson, R.W., van Halbeek, H. J. Biol. Chem. (1990) [Pubmed]
  26. Geography of intestinal permeability and absorption. Menzies, I.S., Zuckerman, M.J., Nukajam, W.S., Somasundaram, S.G., Murphy, B., Jenkins, A.P., Crane, R.S., Gregory, G.G. Gut (1999) [Pubmed]
  27. The Yersinia yop regulon. Cornelis, G.R., Biot, T., Lambert de Rouvroit, C., Michiels, T., Mulder, B., Sluiters, C., Sory, M.P., Van Bouchaute, M., Vanooteghem, J.C. Mol. Microbiol. (1989) [Pubmed]
  28. Regulation of O-antigen chain length is required for Shigella flexneri virulence. Van den Bosch, L., Manning, P.A., Morona, R. Mol. Microbiol. (1997) [Pubmed]
  29. Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. Moralejo, P., Egan, S.M., Hidalgo, E., Aguilar, J. J. Bacteriol. (1993) [Pubmed]
  30. Cloning, mapping and gene product identification of rhaT from Escherichia coli K12. Baldomá, L., Badía, J., Sweet, G., Aguilar, J. FEMS Microbiol. Lett. (1990) [Pubmed]
  31. Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12. Badía, J., Baldomà, L., Aguilar, J., Boronat, A. FEMS Microbiol. Lett. (1989) [Pubmed]
  32. Nucleotide sequence of the rhaR-sodA interval specifying rhaT in Escherichia coli. Garcia-Martin, C., Baldomà, L., Badía, J., Aguilar, J. J. Gen. Microbiol. (1992) [Pubmed]
  33. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M., Bolognesi, M. J. Mol. Biol. (2001) [Pubmed]
  34. Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism. Watanabe, S., Saimura, M., Makino, K. J. Biol. Chem. (2008) [Pubmed]
  35. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Hinman, L.M., Hamann, P.R., Wallace, R., Menendez, A.T., Durr, F.E., Upeslacis, J. Cancer Res. (1993) [Pubmed]
  36. A regulatory cascade in the induction of rhaBAD. Egan, S.M., Schleif, R.F. J. Mol. Biol. (1993) [Pubmed]
  37. L-Rhamnose increases serum propionate after long-term supplementation, but lactulose does not raise serum acetate. Vogt, J.A., Ishii-Schrade, K.B., Pencharz, P.B., Wolever, T.M. Am. J. Clin. Nutr. (2004) [Pubmed]
  38. RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Usadel, B., Kuschinsky, A.M., Rosso, M.G., Eckermann, N., Pauly, M. Plant Physiol. (2004) [Pubmed]
WikiGenes - Universities