The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rat liver aldehyde dehydrogenase. II. Isolation and characterization of four inducible isozymes.

The purification and properties of 4 inducible cytosolic rat liver aldehyde dehydrogenase isozymes are described. Based on their behavior during purification and their properties, the activities can be grouped into 2 classes. The isozyme inducible in normal liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the tumor-specific isozyme found in hepatocellular carcinomas have apparent molecular weights of 110,000, prefer NADP+ as coenzyme, and preferentially oxidize benzaldehyde-like aromatic aldehydes, but not phenylacetaldehyde. They also have identical pH profiles and responses to effectors. These isozymes differ slightly in isoelectric point and thermal stability. The normal liver phenobarbital-inducible isozyme and the isozyme appearing during the promotion phase of hepatocarcinogenesis appear to be identical. Both have apparent molecular weights of 165,000, are NAD-specific and prefer aliphatic aldehydes. They can oxidize phenylacetaldehyde, but not benzaldehyde-like aromatic aldehydes. They also have identical pH and thermal stability profiles and responses to effectors. While the 4 inducible isozymes share identical subunit molecular weights (54,000) with the normal liver millimolar Km aldehyde dehydrogenases, they are distinctly different enzymatic species. The interrelationships of the various normal liver and inducible rat liver aldehyde dehydrogenases are discussed.[1]

References

 
WikiGenes - Universities