The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Synergistic stimulation of S6 ribosomal protein phosphorylation and DNA synthesis by epidermal growth factor and insulin in quiescent 3T3 cells.

Using an improved method to quantify the level of phosphorylation of the S6 ribosomal protein, we have analyzed the effect of growth stimuli on S6 phosphorylation in quiescent murine Swiss/3T3 cells to see if it can be dissociated from the later increase in DNA synthesis. Saturating concentrations of epidermal growth factor ( EGF), insulin and serum each stimulate phosphorylation of the S6 ribosomal protein to the same maximal level; this is not so for DNA synthesis. Subsaturating concentrations of EGF and insulin act synergistically to stimulate both S6 phosphorylation and DNA synthesis, but qualitatively the two synergistic interactions are expressed differently. Insulin increases the maximal response of DNA synthesis to EGF, whereas it decreases the concentration of EGF required for half-maximal stimulation of S6 phosphorylation. We conclude that S6 phosphorylation is not a principal regulator of DNA synthesis, and that insulin and EGF regulate both S6 phosphorylation and DNA synthesis through different, but interacting, pathways of action.[1]

References

 
WikiGenes - Universities