The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Physiological basis for meso-tartrate sensitivity in some strains of Salmonella typhimurium.

meso-Tartrate inhibited the growth of non-meso-tartrate-utilizing strains of Salmonella typhimurium in peptone water media and mineral salts media with some, but not all, carbon sources. C-R intermediates of the tricarboxylic acid cycle or compounds readily converted to them and substrates metabolized independently of the C-6 part of the cycle spared bacteria from the inhibitory effects of meso-tartrate when added to cultures along with meso-tartrate. Experiments with cell-free extracts of non-meso-tartrate-utilizing strains from batch and continuous cultures showed that meso-tartrate was a competitive inhibitor of isocitrate dehydrogenase and isocitrate lyase activities and also inhibited citrate synthase and malate synthase activities. The synthesis of these enzymes was not inhibited by meso-tartrate. The isocitrate enzymes of meso-tartrate-utilizing strains of S. typhimurium were similarly inhibited by meso-tartrate, but inhibition of the growth of meso-tartrate-utilizing strains was demonstrable only in uninduced cultures in which the intracellular concentrations of meso-tartrate were high.[1]

References

  1. Physiological basis for meso-tartrate sensitivity in some strains of Salmonella typhimurium. Old, D.C., Alfredsson, G.A., Brown, C.M. J. Bacteriol. (1980) [Pubmed]
 
WikiGenes - Universities