The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

isocitric acid     (1R,2S)-1-hydroxypropane- 1,2,3...

Synonyms: CHEBI:151, AC1NSWZ2, CHEMBL390356, AG-G-20065, HMDB01874, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of D-threo-Isocitric acid


High impact information on D-threo-Isocitric acid


Chemical compound and disease context of D-threo-Isocitric acid


Biological context of D-threo-Isocitric acid


Anatomical context of D-threo-Isocitric acid

  • Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes [20].
  • Mycobacterium tuberculosis (Mtb) isocitrate dehydrogenases show strong B cell response and distinguish vaccinated controls from TB patients [21].
  • Surprisingly, NADPH does not seem to be supplied by the pentose phosphate pathway in the unfertilised oocyte but rather by cytosolic NADP-dependent isocitrate dehydrogenase [22].
  • We conclude that export of citrate and/or isocitrate from the mitochondria to the cytosol is an important step in control of GSIS [23].
  • Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate [24].

Associations of D-threo-Isocitric acid with other chemical compounds

  • Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L [16].
  • Our results show that S711 is a target of phosphorylation capable of conferring distinct effects on c-acon function potentially dictating changes in cytosolic citrate/isocitrate metabolism [25].
  • The data show that with substrate, only the carboxyl at C-2 of the propane backbone is strongly bound in addition to H2O or OH- (HxO) from the solvent, whereas in an isocitrate analogue that has a nitro group at C-2, the carboxyl and hydroxyl at C-1 are bound along with solvent HxO [26].
  • However, we have found that a zwf1Delta ald6Delta mutant can be constructed by mating when tetrads are dissected on plates with a nonfermentable carbon source (lactate), a condition associated with expression of another enzymatic source of NADPH, cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p) [27].
  • Growth phenotype analyses of the mutants indicate that either cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p) or the hexose monophosphate shunt is essential for growth with fatty acids as carbon sources and for sporulation of diploid strains, a condition associated with high levels of fatty acid synthesis [28].

Gene context of D-threo-Isocitric acid

  • One of the ECA mutations was found to be in the gene encoding cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDP2) [29].
  • This loss of viability is not observed following transfer of a DeltaIDP3 strain lacking peroxisomal isocitrate dehydrogenase to medium with docosahexaenoate, a nonpermissive carbon source that requires function of IDP3 for beta-oxidation [30].
  • Growth of Saccharomyces cerevisiae with a fatty acid as carbon source was shown previously to require function of either glucose-6-phosphate dehydrogenase (ZWF1) or cytosolic NADP+-specific isocitrate dehydrogenase (IDP2), suggesting dependence of beta-oxidation on a cytosolic source of NADPH [30].
  • Thus, we speculate that the IDH2 site is catalytic and that the IDH1 site may bind but not catalytically alter isocitrate [31].
  • We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH) [32].

Analytical, diagnostic and therapeutic context of D-threo-Isocitric acid


  1. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Muñoz-Elías, E.J., McKinney, J.D. Nat. Med. (2005) [Pubmed]
  2. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. Saas, J., Ziegelbauer, K., von Haeseler, A., Fast, B., Boshart, M. J. Biol. Chem. (2000) [Pubmed]
  3. Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution. Yasutake, Y., Watanabe, S., Yao, M., Takada, Y., Fukunaga, N., Tanaka, I. J. Biol. Chem. (2003) [Pubmed]
  4. Interstitial deletion of the long arm of chromosome 2 with normal levels of isocitrate dehydrogenase. Glass, I.A., Swindlehurst, C.A., Aitken, D.A., McCrea, W., Boyd, E. J. Med. Genet. (1989) [Pubmed]
  5. Mutation of phosphotransacetylase but not isocitrate lyase reduces the virulence of Salmonella enterica serovar Typhimurium in mice. Kim, Y.R., Brinsmade, S.R., Yang, Z., Escalante-Semerena, J., Fierer, J. Infect. Immun. (2006) [Pubmed]
  6. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. LaPorte, D.C., Koshland, D.E. Nature (1983) [Pubmed]
  7. Gene dosage for isocitrate dehydrogenase in mouse embryos trisomic for chromosome 1. Epstein, C.J., Tucker, G., Travis, B., Gropp, A. Nature (1977) [Pubmed]
  8. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Bolduc, J.M., Dyer, D.H., Scott, W.G., Singer, P., Sweet, R.M., Koshland, D.E., Stoddard, B.L. Science (1995) [Pubmed]
  9. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. van Roermund, C.W., Hettema, E.H., Kal, A.J., van den Berg, M., Tabak, H.F., Wanders, R.J. EMBO J. (1998) [Pubmed]
  10. Subcellular localization of glyoxylate cycle enzymes in Ascaris suum larvae. Rubin, H., Trelease, R.N. J. Cell Biol. (1976) [Pubmed]
  11. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Hurley, J.H., Dean, A.M., Koshland, D.E., Stroud, R.M. Biochemistry (1991) [Pubmed]
  12. Evidence suggesting that the NADPH/NADP ratio modulates the splitting of the isocitrate flux between the glyoxylic and tricarboxylic acid cycles, in Escherichia coli. Bautista, J., Satrústegui, J., Machado, A. FEBS Lett. (1979) [Pubmed]
  13. A Bacillus subtilis malate dehydrogenase gene. Jin, S., De Jesús-Berríos, M., Sonenshein, A.L. J. Bacteriol. (1996) [Pubmed]
  14. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. Hoffman, P.S., Goodwin, A., Johnsen, J., Magee, K., Veldhuyzen van Zanten, S.J. J. Bacteriol. (1996) [Pubmed]
  15. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. McFadden, B.A., Purohit, S. J. Bacteriol. (1977) [Pubmed]
  16. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Comai, L., Dietrich, R.A., Maslyar, D.J., Baden, C.S., Harada, J.J. Plant Cell (1989) [Pubmed]
  17. Abiotic Stress Generates ROS That Signal Expression of Anionic Glutamate Dehydrogenases to Form Glutamate for Proline Synthesis in Tobacco and Grapevine. Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Papadakis, A.K., Stephanou, E.G., Roubelakis-Angelakis, K.A. Plant Cell (2006) [Pubmed]
  18. Spatial patterns of gene expression in Brassica napus seedlings: identification of a cortex-specific gene and localization of mRNAs encoding isocitrate lyase and a polypeptide homologous to proteinases. Dietrich, R.A., Maslyar, D.J., Heupel, R.C., Harada, J.J. Plant Cell (1989) [Pubmed]
  19. Assignment of a locus required for flavoprotein-linked monooxygenase expression to human chromosome 2. Brown, S., Wiebel, F.J., Gelboin, H.V., Minna, J.D. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  20. Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Lee, M.S., Mullen, R.T., Trelease, R.N. Plant Cell (1997) [Pubmed]
  21. Mycobacterium tuberculosis (Mtb) isocitrate dehydrogenases show strong B cell response and distinguish vaccinated controls from TB patients. Banerjee, S., Nandyala, A., Podili, R., Katoch, V.M., Murthy, K.J., Hasnain, S.E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  22. Regulation of redox metabolism in the mouse oocyte and embryo. Dumollard, R., Ward, Z., Carroll, J., Duchen, M.R. Development (2007) [Pubmed]
  23. The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion. Joseph, J.W., Jensen, M.V., Ilkayeva, O., Palmieri, F., Al??rcon, C., Rhodes, C.J., Newgard, C.B. J. Biol. Chem. (2006) [Pubmed]
  24. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. Hiltunen, J.K., Kärki, T., Hassinen, I.E., Osmundsen, H. J. Biol. Chem. (1986) [Pubmed]
  25. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711. Pitula, J.S., Deck, K.M., Clarke, S.L., Anderson, S.A., Vasanthakumar, A., Eisenstein, R.S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C electron-nuclear double resonance spectroscopy. Kennedy, M.C., Werst, M., Telser, J., Emptage, M.H., Beinert, H., Hoffman, B.M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  27. Sources of NADPH in yeast vary with carbon source. Minard, K.I., McAlister-Henn, L. J. Biol. Chem. (2005) [Pubmed]
  28. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. Minard, K.I., Jennings, G.T., Loftus, T.M., Xuan, D., McAlister-Henn, L. J. Biol. Chem. (1998) [Pubmed]
  29. The aconitase function of iron regulatory protein 1. Genetic studies in yeast implicate its role in iron-mediated redox regulation. Narahari, J., Ma, R., Wang, M., Walden, W.E. J. Biol. Chem. (2000) [Pubmed]
  30. Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH. Minard, K.I., McAlister-Henn, L. J. Biol. Chem. (1999) [Pubmed]
  31. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase. Lin, A.P., McCammon, M.T., McAlister-Henn, L. Biochemistry (2001) [Pubmed]
  32. Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Przybyla-Zawislak, B., Gadde, D.M., Ducharme, K., McCammon, M.T. Genetics (1999) [Pubmed]
  33. Re-evaluation of molecular weight of pig heart NAD-specific isocitrate dehydrogenase. Ehrlich, R.S., Hayman, S., Ramachandran, N., Colman, R.F. J. Biol. Chem. (1981) [Pubmed]
  34. Spectroscopic evidence for ligand-induced conformational change in NADP+:isocitrate dehydrogenase. Seery, V.L., Farrell, H.M. J. Biol. Chem. (1990) [Pubmed]
  35. Physical evidence for the dimerization of the triphosphopyridine-specific isocitrate dehydrogenase from pig heart. Kelly, J.H., Plaut, G.W. J. Biol. Chem. (1981) [Pubmed]
WikiGenes - Universities