The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Citric Acid Cycle

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Citric Acid Cycle

 

Psychiatry related information on Citric Acid Cycle

 

High impact information on Citric Acid Cycle

 

Chemical compound and disease context of Citric Acid Cycle

 

Biological context of Citric Acid Cycle

 

Anatomical context of Citric Acid Cycle

 

Associations of Citric Acid Cycle with chemical compounds

  • This indicated that lactate was metabolized directly via pyruvate to enter the tricarboxylic acid cycle [27].
  • Compounds transported by MFS permeases include simple sugars, oligosaccharides, inositols, drugs, amino acids, nucleosides, organophosphate esters, Krebs cycle metabolites, and a large variety of organic and inorganic anions and cations [28].
  • The pathogenesis in these instances seems to consist of an initial synergistic insult on the liver by mixed types of viruses and subsequent breakdown of urea cycle, Krebs cycle, and possible other hepatic functions [29].
  • At this glucose concentration, there was no measurable accumulation of lactate in sensitized spleen cells, but Krebs cycle activity was detectable [30].
  • Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites [31].
 

Gene context of Citric Acid Cycle

 

Analytical, diagnostic and therapeutic context of Citric Acid Cycle

References

  1. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Baughn, A.D., Malamy, M.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. Fischer, E., Sauer, U. J. Biol. Chem. (2003) [Pubmed]
  3. DNase I footprinting, DNA bending and in vitro transcription analyses of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcriptional activation mechanism. McFall, S.M., Klem, T.J., Fujita, N., Ishihama, A., Chakrabarty, A.M. Mol. Microbiol. (1997) [Pubmed]
  4. Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets. Springett, R., Wylezinska, M., Cady, E.B., Cope, M., Delpy, D.T. J. Cereb. Blood Flow Metab. (2000) [Pubmed]
  5. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. Pollard, P., Wortham, N., Barclay, E., Alam, A., Elia, G., Manek, S., Poulsom, R., Tomlinson, I. J. Pathol. (2005) [Pubmed]
  6. Brain alpha-ketoglutarate dehydrogenase complex activity in Alzheimer's disease. Mastrogiacomo, F., Bergeron, C., Kish, S.J. J. Neurochem. (1993) [Pubmed]
  7. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomäki, K., Hietala, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., Aaltonen, L.A. Nat. Genet. (2002) [Pubmed]
  8. Mammalian cells with defective mitochondrial functions: a Chinese hamster mutant cell line lacking succinate dehydrogenase activity. Soderberg, K.L., Ditta, G.S., Scheffler, I.E. Cell (1977) [Pubmed]
  9. Diode-like behaviour of a mitochondrial electron-transport enzyme. Sucheta, A., Ackrell, B.A., Cochran, B., Armstrong, F.A. Nature (1992) [Pubmed]
  10. A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. LaPorte, D.C., Koshland, D.E. Nature (1982) [Pubmed]
  11. Extended life-span conferred by cotransporter gene mutations in Drosophila. Rogina, B., Reenan, R.A., Nilsen, S.P., Helfand, S.L. Science (2000) [Pubmed]
  12. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step. Stueland, C.S., Gorden, K., LaPorte, D.C. J. Biol. Chem. (1988) [Pubmed]
  13. On the association of succinate dehydrogenase mutations with hereditary paraganglioma. Baysal, B.E. Trends Endocrinol. Metab. (2003) [Pubmed]
  14. Enzymatic activities of cell-free extracts of Rickettsia typhi. Coolbaugh, J.C., Progar, J.J., Weiss, E. Infect. Immun. (1976) [Pubmed]
  15. Factors affecting the activity of citrate synthase of Acetobacter xylinum and its possible regulatory role. Swissa, M., Benziman, M. Biochem. J. (1976) [Pubmed]
  16. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance. Chapa, F., Künnecke, B., Calvo, R., Escobar del Rey, F., Morreale de Escobar, G., Cerdán, S. Endocrinology (1995) [Pubmed]
  17. Modeling mitochondrial function in aging neurons. Melov, S. Trends Neurosci. (2004) [Pubmed]
  18. Metabolic control of circulation. Effects of iodoacetate and fluoroacetate. Liang, C.S. J. Clin. Invest. (1977) [Pubmed]
  19. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. Consoli, A., Kennedy, F., Miles, J., Gerich, J. J. Clin. Invest. (1987) [Pubmed]
  20. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Cozzone, A.J. Annu. Rev. Microbiol. (1998) [Pubmed]
  21. 13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae. den Hollander, J.A., Behar, K.L., Shulman, R.G. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  22. Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Hermann, H.P., Pieske, B., Schwarzmüller, E., Keul, J., Just, H., Hasenfuss, G. Lancet (1999) [Pubmed]
  23. Sodium-coupled transporters for Krebs cycle intermediates. Pajor, A.M. Annu. Rev. Physiol. (1999) [Pubmed]
  24. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Ristow, M., Pfister, M.F., Yee, A.J., Schubert, M., Michael, L., Zhang, C.Y., Ueki, K., Michael, M.D., Lowell, B.B., Kahn, C.R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  25. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Shen, J., Petersen, K.F., Behar, K.L., Brown, P., Nixon, T.W., Mason, G.F., Petroff, O.A., Shulman, G.I., Shulman, R.G., Rothman, D.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  26. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Kippen, I., Hirayama, B., Klinenberg, J.R., Wright, E.M. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  27. Lactate-supported synaptic function in the rat hippocampal slice preparation. Schurr, A., West, C.A., Rigor, B.M. Science (1988) [Pubmed]
  28. Major facilitator superfamily. Pao, S.S., Paulsen, I.T., Saier, M.H. Microbiol. Mol. Biol. Rev. (1998) [Pubmed]
  29. Reye syndrome. A correlated electron-microscopic, viral, and biochemical observation. Tang, T.T., Siegesmund, K.A., Sedmak, G.V., Casper, J.T., Varma, R.R., McCreadie, S.R. JAMA (1975) [Pubmed]
  30. Requirement for hexose, unrelated to energy provision, in T-cell-mediated cytolysis at the lethal hit stage. MacLennan, I.C., Golstein, P. J. Exp. Med. (1978) [Pubmed]
  31. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. Karupiah, G., Harris, N. J. Exp. Med. (1995) [Pubmed]
  32. Truncated product of the bifunctional DLST gene involved in biogenesis of the respiratory chain. Kanamori, T., Nishimaki, K., Asoh, S., Ishibashi, Y., Takata, I., Kuwabara, T., Taira, K., Yamaguchi, H., Sugihara, S., Yamazaki, T., Ihara, Y., Nakano, K., Matuda, S., Ohta, S. EMBO J. (2003) [Pubmed]
  33. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Pollard, P.J., Brière, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., Hargreaves, I.P., Heales, S.J., Chung, Y.L., Griffiths, J.R., Dalgleish, A., McGrath, J.A., Gleeson, M.J., Hodgson, S.V., Poulsom, R., Rustin, P., Tomlinson, I.P. Hum. Mol. Genet. (2005) [Pubmed]
  34. Saccharomyces cerevisiae contains two functional citrate synthase genes. Kim, K.S., Rosenkrantz, M.S., Guarente, L. Mol. Cell. Biol. (1986) [Pubmed]
  35. Elevated hepatocyte levels of the Forkhead box A2 (HNF-3beta) transcription factor cause postnatal steatosis and mitochondrial damage. Hughes, D.E., Stolz, D.B., Yu, S., Tan, Y., Reddy, J.K., Watkins, S.C., Diehl, A.M., Costa, R.H. Hepatology (2003) [Pubmed]
  36. Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Tanizawa, Y., Nakai, K., Sasaki, T., Anno, T., Ohta, Y., Inoue, H., Matsuo, K., Koga, M., Furukawa, S., Oka, Y. Diabetes (2002) [Pubmed]
  37. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: 31P and 13C NMR studies. Neeman, M., Degani, H. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  38. Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Inoue, K., Fei, Y.J., Huang, W., Zhuang, L., Chen, Z., Ganapathy, V. Biochem. J. (2002) [Pubmed]
  39. Constitutive uptake and degradation of fatty acids by Yersinia pestis. Moncla, B.J., Hillier, S.L., Charnetzky, W.T. J. Bacteriol. (1983) [Pubmed]
  40. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Campbell, B.J., Cary, S.C. Appl. Environ. Microbiol. (2004) [Pubmed]
  41. The effect of melatonin chronic treatment upon macrophage and lymphocyte metabolism and function in Walker-256 tumour-bearing rats. Martins, E., Fernandes, L.C., Bartol, I., Cipolla-Neto, J., Costa Rosa, L.F. J. Neuroimmunol. (1998) [Pubmed]
 
WikiGenes - Universities