Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin.
The numbers of ultraviolet light (UV)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus UV endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these UV-irradiated neonatal mice to photoreactivating (PR) light ("cool white" fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either UV-irradiated mice or UV-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of UV-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then UV, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or UV-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.[1]References
- Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin. Ananthaswamy, H.N., Fisher, M.S. Cancer Res. (1981) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg