The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nonlinear current-voltage relationships in cultured macrophages.

Intracellular recordings of cultured mouse thioglycolate-induced peritoneal exudate macrophages reveal that these cells can exhibit two different types of electrophysiological properties characterized by differences in their current-voltage relationships and their resting membrane potentials. The majority of cells had low resting membrane potentials (-20 to -40 mV) and displayed current-voltage relationships that were linear for inward-going current pulses and rectifying for outward-going pulses. Small depolarizing transients, occurring either spontaneously or induced by current pulses, were seen in some cells with low resting membrane potentials. A second smaller group of cells exhibited more hyperpolarized resting membrane potentials (-60 to -90 mV) and S-shaped current-voltage relationships associated with a high-resistance transitional region. Cells with S-shaped current-voltage relationships sometimes exhibited two stable states of membrane potential on either side of the high-resistance transitional region. These data indicate that macrophages exhibit complex electrophysiological properties often associated with excitable cells.[1]

References

  1. Nonlinear current-voltage relationships in cultured macrophages. Gallin, E.K., Livengood, D.R. J. Cell Biol. (1980) [Pubmed]
 
WikiGenes - Universities