The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Membrane Potentials

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Membrane Potentials

 

Psychiatry related information on Membrane Potentials

 

High impact information on Membrane Potentials

  • The intricate causal relationships among ion channels, membrane potential, [Ca2+]i, and lymphokine gene expression can now be pursued at the single-cell level with patch-clamp recording, calcium-dependent dyes, reporter genes, and fluorescence video techniques [9].
  • 1) Their activity is not predicted by thermodynamic parameters of classical electrogenic countertransporters (dependence on ionic gradients and membrane potential), but is markedly regulated by transported (Na(+) and Ca(2+)) and nontransported ionic species (protons and other monovalent cations) [10].
  • Our pharmacological experiments and measurements of firing rate versus membrane potential also reveal that sodium channels act both to advance the response of the LGMD in time and to map membrane potential to firing rate in a nearly exponential manner [11].
  • The Cav3 family of alpha1 subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types [12].
  • In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes [13].
 

Chemical compound and disease context of Membrane Potentials

 

Biological context of Membrane Potentials

 

Anatomical context of Membrane Potentials

 

Associations of Membrane Potentials with chemical compounds

  • Glucose may influence Ca2+ influx through these channels in two ways: either by regulating the beta-cell membrane potential or by biochemical modulation of the channel itself [29].
  • Thus, a fall in resting membrane potential, an increase in input resistance, and spread of acetylcholine receptors to extrajunctional sites can all be induced by abolishing muscle activity and prevented by direct stimulation of denervated muscle fibres [30].
  • Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized [31].
  • Here we report that a high proportion of synapses in hippocampal area CA1 transmit with NMDA receptors but not AMPA receptors, making these synapses effectively non-functional at normal resting potentials [32].
  • Serotonin caused a slow depolarization of membrane potential of about 5 mV which remained sub-threshold, accompanied by an increase in electrical excitability of the neurone, and an increase in input resistance [33].
 

Gene context of Membrane Potentials

  • These results and membrane potential measurements suggest that the AKT1 channel mediates potassium uptake from solutions that contain as little as 10 micromolar potassium [34].
  • Measurements of membrane potential in growing pollen tubes yielded data compatible with a contribution of SPIK to K(+) influx [35].
  • When apoptosis is induced by cross-linking of the Fas/APO-1/CD95 receptor, activation of interleukin-1beta converting enzyme (ICE; caspase 1) or ICE-like enzymes precedes the disruption of the mitochondrial inner transmembrane potential (DeltaPsim) [36].
  • In the absence of an inner membrane potential, Tim23p is translocated across the mitochondrial outer membrane, but not inserted into the inner membrane [37].
  • A potential membrane location for the SEC62 gene product is supported by evaluation of the molecular clone [38].
 

Analytical, diagnostic and therapeutic context of Membrane Potentials

References

  1. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. de Vrije, T., de Swart, R.L., Dowhan, W., Tommassen, J., de Kruijff, B. Nature (1988) [Pubmed]
  2. Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-fold rearrangement. Yoder, J.D., Dormitzer, P.R. EMBO J. (2006) [Pubmed]
  3. Change in membrane potential during bacterial chemotaxis. Szmelcman, S., Adler, J. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  4. Membrane potential and gentamicin uptake in Staphylococcus aureus. Mates, S.M., Eisenberg, E.S., Mandel, L.J., Patel, L., Kaback, H.R., Miller, M.H. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  5. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Widdicombe, J.H., Welsh, M.J., Finkbeiner, W.E. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  6. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. Feldman, D.E., Nicoll, R.A., Malenka, R.C. J. Neurobiol. (1999) [Pubmed]
  7. Ethanol-induced modulation of the membrane potential and synaptic activity of trigeminal motoneurons during sleep and wakefulness. Baranyi, A., Chase, M.H. Brain Res. (1984) [Pubmed]
  8. Matrix metalloproteinase inhibition protects hepatic integrity in hemorrhagic shock. Santibanez-Gallerani, A.S., Barber, A.E., Williams, S.J., Davis, S., Zhao, Y., Shires, G.T. J. Gastrointest. Surg. (2000) [Pubmed]
  9. Potassium and calcium channels in lymphocytes. Lewis, R.S., Cahalan, M.D. Annu. Rev. Immunol. (1995) [Pubmed]
  10. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. DiPolo, R., Beaugé, L. Physiol. Rev. (2006) [Pubmed]
  11. Multiplicative computation in a visual neuron sensitive to looming. Gabbiani, F., Krapp, H.G., Koch, C., Laurent, G. Nature (2002) [Pubmed]
  12. Structure and regulation of voltage-gated Ca2+ channels. Catterall, W.A. Annu. Rev. Cell Dev. Biol. (2000) [Pubmed]
  13. Modulation of A-type potassium channels by a family of calcium sensors. An, W.F., Bowlby, M.R., Betty, M., Cao, J., Ling, H.P., Mendoza, G., Hinson, J.W., Mattsson, K.I., Strassle, B.W., Trimmer, J.S., Rhodes, K.J. Nature (2000) [Pubmed]
  14. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Cole, W.C., McPherson, C.D., Sontag, D. Circ. Res. (1991) [Pubmed]
  15. Positive chronotropic responses induced by alpha 1-adrenergic stimulation of normal and "ischemic" Purkinje fibers have different receptor-effector coupling mechanisms. Anyukhovsky, E.P., Rybin, V.O., Nikashin, A.V., Budanova, O.P., Rosen, M.R. Circ. Res. (1992) [Pubmed]
  16. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Knabb, M.T., Saffitz, J.E., Corr, P.B., Sobel, B.E. Circ. Res. (1986) [Pubmed]
  17. Mechanism of proline transport in Escherichia coli K12. I. Effect of a membrane potential on the kinetics of 2H+/proline symport in cytoplasmic membrane vesicles. Mogi, T., Anraku, Y. J. Biol. Chem. (1984) [Pubmed]
  18. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. Wu, M., Hancock, R.E. J. Biol. Chem. (1999) [Pubmed]
  19. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Taglialatela, M., Wible, B.A., Caporaso, R., Brown, A.M. Science (1994) [Pubmed]
  20. The protooncogene TCL1 is an Akt kinase coactivator. Laine, J., Künstle, G., Obata, T., Sha, M., Noguchi, M. Mol. Cell (2000) [Pubmed]
  21. A caspase-activated factor (CAF) induces mitochondrial membrane depolarization and cytochrome c release by a nonproteolytic mechanism. Steemans, M., Goossens, V., Van de Craen, M., Van Herreweghe, F., Vancompernolle, K., De Vos, K., Vandenabeele, P., Grooten, J. J. Exp. Med. (1998) [Pubmed]
  22. Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. Liu, H., Perlman, H., Pagliari, L.J., Pope, R.M. J. Exp. Med. (2001) [Pubmed]
  23. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. Lee, M.D., She, Y., Soskis, M.J., Borella, C.P., Gardner, J.R., Hayes, P.A., Dy, B.M., Heaney, M.L., Philips, M.R., Bornmann, W.G., Sirotnak, F.M., Scheinberg, D.A. J. Clin. Invest. (2004) [Pubmed]
  24. Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Murphy, M.P., Brand, M.D. Nature (1987) [Pubmed]
  25. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Madison, D.V., Malenka, R.C., Nicoll, R.A. Nature (1986) [Pubmed]
  26. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Brew, H., Attwell, D. Nature (1987) [Pubmed]
  27. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Salama, G., Morad, M. Science (1976) [Pubmed]
  28. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Hollmann, M., Hartley, M., Heinemann, S. Science (1991) [Pubmed]
  29. Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Smith, P.A., Rorsman, P., Ashcroft, F.M. Nature (1989) [Pubmed]
  30. A physiological correlate of disuse-induced sprouting at the neuromuscular junction. Snider, W.D., Harris, G.L. Nature (1979) [Pubmed]
  31. Magnesium gates glutamate-activated channels in mouse central neurones. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., Prochiantz, A. Nature (1984) [Pubmed]
  32. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Liao, D., Hessler, N.A., Malinow, R. Nature (1995) [Pubmed]
  33. Intracellular studies showing modulation of facial motoneurone excitability by serotonin. VanderMaelen, C.P., Aghajanian, G.K. Nature (1980) [Pubmed]
  34. A role for the AKT1 potassium channel in plant nutrition. Hirsch, R.E., Lewis, B.D., Spalding, E.P., Sussman, M.R. Science (1998) [Pubmed]
  35. Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Mouline, K., Véry, A.A., Gaymard, F., Boucherez, J., Pilot, G., Devic, M., Bouchez, D., Thibaud, J.B., Sentenac, H. Genes Dev. (2002) [Pubmed]
  36. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. Susin, S.A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.G., Geley, S., Fassy, F., Reed, J.C., Kroemer, G. J. Exp. Med. (1997) [Pubmed]
  37. Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. Davis, A.J., Sepuri, N.B., Holder, J., Johnson, A.E., Jensen, R.E. J. Cell Biol. (2000) [Pubmed]
  38. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. Deshaies, R.J., Schekman, R. J. Cell Biol. (1989) [Pubmed]
  39. The superoxide dismutase mimetic MnTBAP prevents Fas-induced acute liver failure in the mouse. Malassagne, B., Ferret, P.J., Hammoud, R., Tulliez, M., Bedda, S., Trébéden, H., Jaffray, P., Calmus, Y., Weill, B., Batteux, F. Gastroenterology (2001) [Pubmed]
  40. Serotonin excites neurons in the human submucous plexus via 5-HT3 receptors. Michel, K., Zeller, F., Langer, R., Nekarda, H., Kruger, D., Dover, T.J., Brady, C.A., Barnes, N.M., Schemann, M. Gastroenterology (2005) [Pubmed]
  41. Time-courses of hepatocellular hyperpolarization and cyclic adenosine 3',5'-monophosphate accumulation after partial hepatectomy in the rat. Effects of fasting for 48 hours and intravenous injection of glucose. Paloheimo, M., Linkola, J., Lempinen, M., Folke, M. Gastroenterology (1984) [Pubmed]
  42. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. Clarke, M.C., Savill, J., Jones, D.B., Noble, B.S., Brown, S.B. J. Cell Biol. (2003) [Pubmed]
  43. Calcium movement and membrane potential changes in the early phase of neutrophil activation by phorbol myristate acetate: a study with ion-selective electrodes. Mottola, C., Romeo, D. J. Cell Biol. (1982) [Pubmed]
 
WikiGenes - Universities