The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.

Cation-selective P2X receptor channels were first described in sensory neurons where they are important for primary afferent neurotransmission and nociception. Here we report the cloning of a complementary DNA ( P2X3) from rat dorsal root ganglia that had properties dissimilar to those of sensory neurons. We also found RNA for (P2X1)(ref. 7), (P2X2)(ref. 8) and P2X4 (ref. 9) in sensory neurons; channels expressed from individual cDNAs did not reproduce those of sensory ganglia. Coexpression of P2X3 with P2X2, but not other combinations, yielded ATP-activated currents that closely resembled those in sensory neurons. These properties could not be accounted for by addition of the two sets of channels, indicating that a new channel had formed by subunit heteropolymerization. Although in some tissues responses to ATP can be accounted for by homomeric channels, our results indicate that ATP-gated channels of sensory neurons may form by a specific heteropolymerization of P2X receptor subunits.[1]


  1. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Lewis, C., Neidhart, S., Holy, C., North, R.A., Buell, G., Surprenant, A. Nature (1995) [Pubmed]
WikiGenes - Universities