The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ganglia, Sensory

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ganglia, Sensory

 

Psychiatry related information on Ganglia, Sensory

 

High impact information on Ganglia, Sensory

  • Instead, VRL-1 is activated by high temperatures, with a threshold of approximately 52 degrees C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells [7].
  • Here we show that all autonomic ganglia fail to form properly and degenerate in mice lacking the homeodomain transcription factor Phox2b, as do the three cranial sensory ganglia that are part of the autonomic reflex circuits [8].
  • The expression pattern of Brn-3.0 suggested that it has an important role in the development of sensory ganglia, as well as red nucleus, inferior olive, and nucleus ambiguus [9].
  • Systemically administered flunarizine enhanced neuronal survival in lumbar sensory ganglia in newborn rats after axotomy [10].
  • Nerve growth factor (NGF) is a trophic agent that promotes the outgrowth of nerve fibers from sympathetic and sensory ganglia [11].
 

Chemical compound and disease context of Ganglia, Sensory

 

Biological context of Ganglia, Sensory

 

Anatomical context of Ganglia, Sensory

 

Associations of Ganglia, Sensory with chemical compounds

  • Mouse embryos with a loss-of-function mutation in the gene encoding the receptor tyrosine kinase ErbB4 exhibit misprojections of cranial sensory ganglion afferent axons [27].
  • Nerve growth factor stimulates the development of substance P in sensory ganglia [28].
  • Extracellular Ca2+-dependent desensitization of TRPV1 observed in patch-clamp experiments when using both heterologous expression systems and native sensory ganglia is thought to be one mechanism underlying the paradoxical effectiveness of capsaicin as an analgesic therapy [29].
  • With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide [30].
  • Acyclovir and bromovinyldeoxyuridine both blocked the reaction and the multiplication of reactivated latent virus, and transiently suppressed but did not eliminate latent virus from the sensory ganglia [31].
 

Gene context of Ganglia, Sensory

 

Analytical, diagnostic and therapeutic context of Ganglia, Sensory

References

  1. Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium. Fawl, R.L., Roizman, B. J. Virol. (1993) [Pubmed]
  2. Acute effects of capsaicin on the postnatal spiral ganglion. Simmons, D.D., Rogers, M.S., Woody, D. Int. J. Dev. Neurosci. (1994) [Pubmed]
  3. Enhancement of neurite outgrowth in PC12h cells by a protease inhibitor. Saito, Y., Kawashima, S. Neurosci. Lett. (1988) [Pubmed]
  4. The herpes simplex virus type 1 early gene (thymidine kinase) promoter is activated in neurons of brain, but not trigeminal ganglia, of transgenic mice in the absence of viral proteins. Loiacono, C.M., Myers, R., Mitchell, W.J. J. Neurovirol. (2004) [Pubmed]
  5. The response of central glia to peripheral nerve injury. Svensson, M., Eriksson, P., Persson, J.K., Molander, C., Arvidsson, J., Aldskogius, H. Brain Res. Bull. (1993) [Pubmed]
  6. Nerve growth factor prevents experimental cisplatin neuropathy. Apfel, S.C., Arezzo, J.C., Lipson, L., Kessler, J.A. Ann. Neurol. (1992) [Pubmed]
  7. A capsaicin-receptor homologue with a high threshold for noxious heat. Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J., Julius, D. Nature (1999) [Pubmed]
  8. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Pattyn, A., Morin, X., Cremer, H., Goridis, C., Brunet, J.F. Nature (1999) [Pubmed]
  9. Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. McEvilly, R.J., Erkman, L., Luo, L., Sawchenko, P.E., Ryan, A.F., Rosenfeld, M.G. Nature (1996) [Pubmed]
  10. Flunarizine protects neurons from death after axotomy or NGF deprivation. Rich, K.M., Hollowell, J.P. Science (1990) [Pubmed]
  11. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Milbrandt, J. Science (1987) [Pubmed]
  12. Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant. Chen, S.H., Cook, W.J., Grove, K.L., Coen, D.M. J. Virol. (1998) [Pubmed]
  13. Latent infections of sensory ganglia as influenced by phosphonoformate treatment of herpes simplex virus-induced skin infections in hairless mice. Klein, R.J., DeStefano, E., Brady, E., Friedman-Kien, A.E. Antimicrob. Agents Chemother. (1979) [Pubmed]
  14. Latent herpes simplex virus infections in sensory ganglia of mice after topical treatment with adenine arabinoside and adenine arabinoside monophosphate. Klein, R.J., Friedman-Kien, A.E. Antimicrob. Agents Chemother. (1977) [Pubmed]
  15. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. Chattopadhyay, M., Goss, J., Lacomis, D., Goins, W.C., Glorioso, J.C., Mata, M., Fink, D.J. Eur. J. Neurosci. (2003) [Pubmed]
  16. Nitric oxide synthase in autonomic innervation of the cat carotid body. Grimes, P.A., Mokashi, A., Stone, R.A., Lahiri, S. J. Auton. Nerv. Syst. (1995) [Pubmed]
  17. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Page, A.J., Brierley, S.M., Martin, C.M., Martinez-Salgado, C., Wemmie, J.A., Brennan, T.J., Symonds, E., Omari, T., Lewin, G.R., Welsh, M.J., Blackshaw, L.A. Gastroenterology (2004) [Pubmed]
  18. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Kondo, T., Johnson, S.A., Yoder, M.C., Romand, R., Hashino, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Murphy, P., Topilko, P., Schneider-Maunoury, S., Seitanidou, T., Baron-Van Evercooren, A., Charnay, P. Development (1996) [Pubmed]
  20. Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. Bedford, F.K., Julius, D., Ingraham, H.A. J. Neurosci. (1998) [Pubmed]
  21. Coordinated regulation of gene expression by Brn3a in developing sensory ganglia. Eng, S.R., Lanier, J., Fedtsova, N., Turner, E.E. Development (2004) [Pubmed]
  22. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Lee, E.Y., Hu, N., Yuan, S.S., Cox, L.A., Bradley, A., Lee, W.H., Herrup, K. Genes Dev. (1994) [Pubmed]
  23. Novel mechanisms of estrogen action in the brain: new players in an old story. Toran-Allerand, C.D., Singh, M., Sétáló, G. Frontiers in neuroendocrinology. (1999) [Pubmed]
  24. Immunocytochemical identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord: light microscopic studies. Chan-Palay, V., Palay, S.L. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  25. Expression of nerve growth factor receptor mRNA during early development of the chicken embryo: emphasis on cranial ganglia. Hallböök, F., Ayer-Lelièvre, C., Ebendal, T., Persson, H. Development (1990) [Pubmed]
  26. Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Holzschuh, J., Barrallo-Gimeno, A., Ettl, A.K., Durr, K., Knapik, E.W., Driever, W. Development (2003) [Pubmed]
  27. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Golding, J.P., Trainor, P., Krumlauf, R., Gassmann, M. Nat. Cell Biol. (2000) [Pubmed]
  28. Nerve growth factor stimulates the development of substance P in sensory ganglia. Kessler, J.A., Black, I.B. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  29. Structural determinant of TRPV1 desensitization interacts with calmodulin. Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., Toyooka, H., Tominaga, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. Movahed, P., Jönsson, B.A., Birnir, B., Wingstrand, J.A., Jørgensen, T.D., Ermund, A., Sterner, O., Zygmunt, P.M., Högestätt, E.D. J. Biol. Chem. (2005) [Pubmed]
  31. Effect of acyclovir, bromovinyldeoxyuridine, vidarabine, and L-lysine on latent ganglionic herpes simplex virus in vitro. Park, N.H., Pavan-Langston, D., Declercq, E. Am. J. Med. (1982) [Pubmed]
  32. Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Huang, E.J., Li, H., Tang, A.A., Wiggins, A.K., Neve, R.L., Zhong, W., Jan, L.Y., Jan, Y.N. Genes Dev. (2005) [Pubmed]
  33. Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Fariñas, I., Wilkinson, G.A., Backus, C., Reichardt, L.F., Patapoutian, A. Neuron (1998) [Pubmed]
  34. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Morin, X., Cremer, H., Hirsch, M.R., Kapur, R.P., Goridis, C., Brunet, J.F. Neuron (1997) [Pubmed]
  35. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. Macleod, K.F., Hu, Y., Jacks, T. EMBO J. (1996) [Pubmed]
  36. G-utrophin, the autosomal homologue of dystrophin Dp116, is expressed in sensory ganglia and brain. Blake, D.J., Schofield, J.N., Zuellig, R.A., Górecki, D.C., Phelps, S.R., Barnard, E.A., Edwards, Y.H., Davies, K.E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  37. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. Fernyhough, P., Diemel, L.T., Brewster, W.J., Tomlinson, D.R. J. Neurochem. (1995) [Pubmed]
  38. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling. Whitehead, M.C., Ganchrow, J.R., Ganchrow, D., Yao, B. Neuroscience (1999) [Pubmed]
  39. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Mulder, H., Uddman, R., Moller, K., Zhang, Y.Z., Ekblad, E., Alumets, J., Sundler, F. Neuroscience (1994) [Pubmed]
  40. Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Martin-Schild, S., Zadina, J.E., Gerall, A.A., Vigh, S., Kastin, A.J. Peptides (1997) [Pubmed]
  41. Calretinin-containing neurons which co-express parvalbumin and calbindin D-28k in the rat spinal and cranial sensory ganglia; triple immunofluorescence study. Ichikawa, H., Jin, H.W., Terayama, R., Yamaai, T., Jacobowitz, D.M., Sugimoto, T. Brain Res. (2005) [Pubmed]
 
WikiGenes - Universities