The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Quantification, qualification, and microbial killing efficiencies of antimicrobial chlorine-based substances produced by iontophoresis.

The dependence of microbial killing on chloride ions present in solutions undergoing iontophoresis is addressed. A 400-microA current was applied to vials containing synthetic urine or saline, and the production of chlorine-based substances (CBSs) was detected by the N,N-diethyl-p-phenylene diamine colorimetric method. It was found that as the time of current application increased, the total concentration of CBSs also increased. The iontophoretic current converted (through oxidation) chloride ions present in the solutions into CBSs such as free chlorine, chlorine dioxide, chlorite, monochloramine, and dichloramine (the last two were produced by iontophoresis only when nitrogenous substances were present in the solution). Two of the CBSs (free Cl and ClO2), when they were separately added back to microbial suspensions (approximately 3 x 10(5) CFU/ml) at the same concentrations at which they were detected in either 0.46% (wt/vol) NaCl solution or synthetic urine iontophoresed for 4 h at 400 microA, reduced or eliminated bacterial genera and a fungus. However, when free Cl and ClO2 were jointly added back to microbial suspensions, bacterial and fungal killing was synergistic and more rapid and complete than when these chlorine-based biocides were added separately. Therefore, iontophoresis of solutions containing chloride ions produces chlorine-based biocides that are responsible for the antimicrobial effect of iontophoresis.[1]

References

  1. Quantification, qualification, and microbial killing efficiencies of antimicrobial chlorine-based substances produced by iontophoresis. Davis, C.P., Shirtliff, M.E., Trieff, N.M., Hoskins, S.L., Warren, M.M. Antimicrob. Agents Chemother. (1994) [Pubmed]
 
WikiGenes - Universities