The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling.

Using computer methods for multiple alignment, sequence motif search, and tertiary structure modeling, we show that eukaryotic translation elongation factor 1 gamma (EF1 gamma) contains an N-terminal domain related to class theta glutathione S-transferases (GST). GST-like proteins related to class theta comprise a large group including, in addition to typical GSTs and EF1 gamma, stress-induced proteins from bacteria and plants, bacterial reductive dehalogenases and beta-etherases, and several uncharacterized proteins. These proteins share 2 conserved sequence motifs with GSTs of other classes (alpha, mu, and pi). Tertiary structure modeling showed that in spite of the relatively low sequence similarity, the GST-related domain of EF1 gamma is likely to form a fold very similar to that in the known structures of class alpha, mu, and pi GSTs. One of the conserved motifs is implicated in glutathione binding, whereas the other motif probably is involved in maintaining the proper conformation of the GST domain. We predict that the GST-like domain in EF1 gamma is enzymatically active and that to exhibit GST activity, EF1 gamma has to form homodimers. The GST activity may be involved in the regulation of the assembly of multisubunit complexes containing EF1 and aminoacyl-tRNA synthetases by shifting the balance between glutathione, disulfide glutathione, thiol groups of cysteines, and protein disulfide bonds. The GST domain is a widespread, conserved enzymatic module that may be covalently or noncovalently complexed with other proteins. Regulation of protein assembly and folding may be 1 of the functions of GST.[1]


WikiGenes - Universities