The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues -1 and 73 but is dependent on the RNA context.

Residue G-1 and discriminator base C73 are the major histidine identity elements in prokaryotes. Here we evaluate the importance of these two nucleotides in yeast histidine aminoacylation identity. Deletion of G-1 in yeast tRNA(His) transcript leads to a drastic loss of histidylation specificity (about 500-fold). Mutation of discriminator base A73, common to all yeast tRNA(His) species, into G73 has a more moderate but still significant effect with a 22-fold decrease in histidylation specificity. Changes at position 36 in the anticodon loop has negligible effect on histidylation. The role of residues -1 and 73 for specific aminoacylation by yeast HisRS was further investigated by studying the histidylation capacities of seven minihelices derived from the Turnip Yellow Mosaic Virus tRNA-like structure. Changes in the nature of nucleotides -1 and 73 modulate this activity but do not suppress it. The optimal mini-substrate for HisRS presents a G.A mismatch at the position equivalent to residues G-1.A73 in yeast tRNA(His), confirms the importance of this structural feature in yeast histidine identity. The fact that the minisubstrates contain a pseudoknot in which position -1 is mimicked by an internal nucleotide from the pseudoknot highlights further the necessity of a stacking interaction of this position over the amino acid accepting branch of the tRNA during the aminoacylation process. Individual transplantation of G-1 or A73 into yeast tRNA(Asp) transcript improves the histidylation efficiency of the engineered tRNA(Asp). However, a tRNA(Asp) transcript presenting simultaneously both residues G-1 and A73 becomes a less good substrate for HisRS, suggesting the importance of the structural context and/or the presence of antideterminants for an optimal expression of these two identity elements.[1]

References

 
WikiGenes - Universities