The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Aminoacylation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aminoacylation

 

High impact information on Aminoacylation

  • Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth [6].
  • The analog is bound in a pocket, where Pro(41) allows accommodation of the Val and Thr moieties but precludes the Ile moiety (the first sieve), on the aminoacylation domain [7].
  • The existence of this protein contrasts with proposals that aminoacylation with cysteine in M. jannaschii is an auxiliary function of a canonical prolyl-tRNA synthetase [8].
  • Multiple substitutions in many distinct parts of the molecule do not prevent aminoacylation with alanine [9].
  • The enzyme, isoleucyl-transfer RNA synthetase, activates not only the cognate substrate L-isoleucine but also the minimally distinct L-valine in the first, aminoacylation step [10].
 

Chemical compound and disease context of Aminoacylation

 

Biological context of Aminoacylation

 

Anatomical context of Aminoacylation

 

Associations of Aminoacylation with chemical compounds

 

Gene context of Aminoacylation

  • Two yeast enzymes that catalyze aminoacylation of tRNAs, MetRS and GluRS, form a complex with the protein Arc1p [29].
  • In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAphe weakened its interaction with GCN2 [30].
  • Surprisingly, tRNA(His) in Thg1p-depleted cells accumulates additional m(5)C modifications, which are delayed relative to the loss of G(-1) and aminoacylation [31].
  • Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone [32].
  • In this study, we have examined whether variants in the leucyl tRNA synthetase gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes [33].
 

Analytical, diagnostic and therapeutic context of Aminoacylation

References

  1. Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Mikkelsen, N.E., Johansson, K., Virtanen, A., Kirsebom, L.A. Nat. Struct. Biol. (2001) [Pubmed]
  2. Aminoacylation identity switch of turnip yellow mosaic virus RNA from valine to methionine results in an infectious virus. Dreher, T.W., Tsai, C.H., Skuzeski, J.M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Transition state stabilization by the N-terminal anticodon-binding domain of lysyl-tRNA synthetase. Takita, T., Inouye, K. J. Biol. Chem. (2002) [Pubmed]
  4. The effects of a unique D-loop structure of a minor tRNA(UUALeu) from Streptomyces on its structural stability and amino acid accepting activity. Ueda, Y., Kumagai, I., Miura, K. Nucleic Acids Res. (1992) [Pubmed]
  5. Role of residue Glu152 in the discrimination between transfer RNAs by tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Vidal-Cros, A., Bedouelle, H. J. Mol. Biol. (1992) [Pubmed]
  6. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Jordanova, A., Irobi, J., Thomas, F.P., Van Dijck, P., Meerschaert, K., Dewil, M., Dierick, I., Jacobs, A., De Vriendt, E., Guergueltcheva, V., Rao, C.V., Tournev, I., Gondim, F.A., D'Hooghe, M., Van Gerwen, V., Callaerts, P., Van Den Bosch, L., Timmermans, J.P., Robberecht, W., Gettemans, J., Thevelein, J.M., De Jonghe, P., Kremensky, I., Timmerman, V. Nat. Genet. (2006) [Pubmed]
  7. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D.G., Yokoyama, S. Cell (2000) [Pubmed]
  8. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Fàbrega, C., Farrow, M.A., Mukhopadhyay, B., de Crécy-Lagard, V., Ortiz, A.R., Schimmel, P. Nature (2001) [Pubmed]
  9. Aminoacylation of RNA minihelices with alanine. Francklyn, C., Schimmel, P. Nature (1989) [Pubmed]
  10. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Nureki, O., Vassylyev, D.G., Tateno, M., Shimada, A., Nakama, T., Fukai, S., Konno, M., Hendrickson, T.L., Schimmel, P., Yokoyama, S. Science (1998) [Pubmed]
  11. Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Köhrer, C., Xie, L., Kellerer, S., Varshney, U., RajBhandary, U.L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  12. Sequence and structural similarities between the leucine-specific binding protein and leucyl-tRNA synthetase of Escherichia coli. Williamson, R.M., Oxender, D.L. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  13. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine. Sprinzl, M., Cramer, F. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  14. Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. Ludmerer, S.W., Wright, D.J., Schimmel, P. J. Biol. Chem. (1993) [Pubmed]
  15. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base. Schulman, L.H., Pelka, H. J. Biol. Chem. (1977) [Pubmed]
  16. Aminoacylation of synthetic DNAs corresponding to Escherichia coli phenylalanine and lysine tRNAs. Khan, A.S., Roe, B.A. Science (1988) [Pubmed]
  17. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. Walter, F., Pütz, J., Giegé, R., Westhof, E. EMBO J. (2002) [Pubmed]
  18. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F., Gangloff, J., Thierry, J.C., Moras, D. EMBO J. (1994) [Pubmed]
  19. Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains. Chihade, J.W., Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  20. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. Chomyn, A., Enriquez, J.A., Micol, V., Fernandez-Silva, P., Attardi, G. J. Biol. Chem. (2000) [Pubmed]
  21. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. Entelis, N.S., Kolesnikova, O.A., Dogan, S., Martin, R.P., Tarassov, I.A. J. Biol. Chem. (2001) [Pubmed]
  22. Kinetic evidence for half-of-the-sites reactivity in tRNATrp aminoacylation by tryptophanyl-tRNA synthetase from beef pancreas. Trézéguet, V., Merle, M., Gandar, J.C., Labouesse, B. Biochemistry (1986) [Pubmed]
  23. Marcaine, a selective inhibitor of eucaryotic aminoacylation. Jones, G.H. Biochemistry (1979) [Pubmed]
  24. Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Siatecka, M., Rozek, M., Barciszewski, J., Mirande, M. Eur. J. Biochem. (1998) [Pubmed]
  25. Switching recognition of two tRNA synthetases with an amino acid swap in a designed peptide. Auld, D.S., Schimmel, P. Science (1995) [Pubmed]
  26. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R., Schimmel, P. Science (1991) [Pubmed]
  27. An efficient antibody-catalyzed aminoacylation reaction. Jacobsen, J.R., Prudent, J.R., Kochersperger, L., Yonkovich, S., Schultz, P.G. Science (1992) [Pubmed]
  28. Nalidixic acid, oxolinic acid, and novobiocin inhibit yeast glycyl- and leucyl-transfer RNA synthetases. Wright, H.T., Nurse, K.C., Goldstein, D.J. Science (1981) [Pubmed]
  29. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Simos, G., Sauer, A., Fasiolo, F., Hurt, E.C. Mol. Cell (1998) [Pubmed]
  30. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J., Hinnebusch, A.G. Mol. Cell (2000) [Pubmed]
  31. Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Gu, W., Hurto, R.L., Hopper, A.K., Grayhack, E.J., Phizicky, E.M. Mol. Cell. Biol. (2005) [Pubmed]
  32. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. Park, S.G., Jung, K.H., Lee, J.S., Jo, Y.J., Motegi, H., Kim, S., Shiba, K. J. Biol. Chem. (1999) [Pubmed]
  33. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. 't Hart, L.M., Hansen, T., Rietveld, I., Dekker, J.M., Nijpels, G., Janssen, G.M., Arp, P.A., Uitterlinden, A.G., Jørgensen, T., Borch-Johnsen, K., Pols, H.A., Pedersen, O., van Duijn, C.M., Heine, R.J., Maassen, J.A. Diabetes (2005) [Pubmed]
  34. Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. Nureki, O., Kohno, T., Sakamoto, K., Miyazawa, T., Yokoyama, S. J. Biol. Chem. (1993) [Pubmed]
  35. Antibody to threonyl-transfer RNA synthetase in myositis sera. Targoff, I.N., Arnett, F.C., Reichlin, M. Arthritis Rheum. (1988) [Pubmed]
  36. Autoantibodies to glycyl-transfer RNA synthetase in myositis. Association with dermatomyositis and immunologic heterogeneity. Hirakata, M., Suwa, A., Takeda, Y., Matsuoka, Y., Irimajiri, S., Targoff, I.N., Hardin, J.A., Craft, J. Arthritis Rheum. (1996) [Pubmed]
  37. The mechanism of the aminoacylation of transfer ribonucleic acid: enzyme-product dissociation is not rate limiting. Lövgren, T.N., Pastuszyn, A., Loftfield, R.B. Biochemistry (1976) [Pubmed]
  38. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Ibba, M., Sever, S., Praetorius-Ibba, M., Söll, D. Nucleic Acids Res. (1999) [Pubmed]
 
WikiGenes - Universities