Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii.
A novel siderophore, called acinetobactin, with both catecholate and hydroxamate functional groups was isolated from low-iron cultures of Acinetobacter baumannii ATCC 19606. The structure was elucidated by chemical degradation, fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Acinetobactin was composed of omega-N-hydroxyhistamine, threonine and 2,3-dihydroxybenzoic acid, the last two components forming an oxazoline ring. Acinetobactin was structurally related to anguibactin, a plasmid-encoded siderophore of Vibrio anguillarum. The only difference was that acinetobactin possessed an oxazoline ring instead of a thiazoline ring. Four of 12 other clinical A. baumannii strains examined produced acinetobactin, indicative of strain-to-strain variation in the ability to produce acinetobactin. In addition, a relatively small amount of acinetobactin was also detected in A. haemolyticus ATCC 17906.[1]References
- Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Yamamoto, S., Okujo, N., Sakakibara, Y. Arch. Microbiol. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg