The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat.

It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-transporter protein (GLUT4) in muscle from calf and goat. Our data demonstrate that glucose transport is the rate-limiting step for glucose uptake in bovine fibre strips, as in rat muscle. Insulin increases the rate of in vitro glucose transport in bovine muscle, but to a lower extent than in rat muscle. A GLUT4-like protein was detected by immunoblot assay in all insulin-responsive tissues from calf and goat (heart, skeletal muscle, adipose tissue) but not in liver, brain, erythrocytes and intestine. Unlike the rat, bovine and goat GLUT4 content is higher in glycolytic and oxido-glycolytic muscles than in oxidative muscles. In conclusion, using both a functional test (insulin stimulation of glucose transport) and an immunological approach, this study demonstrates that ruminant muscles express GLUT4 protein. Our data also suggest that, in ruminants, glucose is the main energy-yielding substrate for glycolytic but not for oxidative muscles, and that insulin responsiveness may be lower in oxidative than in other skeletal muscles.[1]


  1. Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat. Hocquette, J.F., Bornes, F., Balage, M., Ferre, P., Grizard, J., Vermorel, M. Biochem. J. (1995) [Pubmed]
WikiGenes - Universities