The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation.

The C31 subunit belongs to a complex of three subunits (C31, C34 and C82) specific to RNA polymerase (pol) III that have no counterparts in other RNA polymerases. This complex is thought to play a role in transcription initiation since it interacts with the general initiation factor TFIIIB via subunit C34. We have obtained a conditional mutation of pol III by partially deleting the acidic C-terminus of the C31 subunit. A Saccharomyces cerevisiae strain carrying this truncated C31 subunit is impaired in in vivo transcription of tRNAs and failed to grow at 37 degrees C. This conditional growth phenotype was suppressed by overexpression of the gene coding for the largest subunit of pol III (C160), suggesting an interaction between C160 and C31. The mutant pol III enzyme transcribed non-specific templates at wild-type rates in vitro, but was impaired in its capacity to transcribe tRNA genes in the presence of general initiation factors. Transcription initiation, but not termination or recycling of the enzyme, was affected in the mutant, suggesting that it could be altered on interaction with initiation factors or on the formation of the open complex. Interestingly, the C-terminal deletion was also suppressed by a high gene dosage of the DED1 gene encoding a putative helicase.[1]


  1. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. Thuillier, V., Stettler, S., Sentenac, A., Thuriaux, P., Werner, M. EMBO J. (1995) [Pubmed]
WikiGenes - Universities