The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mutational analysis of the arginine repressor of Escherichia coli.

Arginine biosynthesis in Escherichia coli is negatively regulated by a hexameric repressor protein, encoded by the gene argR and the corepressor arginine. By hydroxylamine mutagenesis two types of argR mutants were isolated and mapped. The first type is transdominant. In heterodiploids, these mutant polypeptides reduce the activity of the wild-type repressor, presumably by forming heteropolymers. Four mutant repressor proteins were purified. Two of these map in the N-terminal half of the protein. Gel retardation experiments showed that they bind poorly to DNA, but they could be precipitated by L-arginine at the same concentration as the wild-type repressor. The other two mutant repressors map in the C-terminal half of the protein. They are poorly precipitated by L-arginine and they bind poorly to DNA. In addition, one of these mutants appears to exist as a dimer. The second type of argR mutant repressor consists of super-repressors. Such mutants behave as arginine auxotrophs as a result of hyper-repression of arginine biosynthetic enzymes. They map at many locations throughout the argR gene. Three arginine super-repressor proteins were purified. In comparison with the wild-type repressor, two of them were shown to have a higher DNA-binding affinity in the absence of bound arginine, while the third was shown to have a higher DNA-binding affinity when bound to arginine.[1]


  1. Mutational analysis of the arginine repressor of Escherichia coli. Tian, G., Maas, W.K. Mol. Microbiol. (1994) [Pubmed]
WikiGenes - Universities