Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage.
BACKGROUND AND PURPOSE: Transforming growth factor-beta 1 ( TGF-beta 1) is a multifunctional polypeptide that controls the production of extracellular matrix protein. Platelets store a large quantity of TGF-beta 1, which is released at hemorrhage. We recently reported that human recombinant TGF-beta 1 induced communicating hydrocephalus in mice. The aim of this study was to determine whether TGF-beta 1 is related to the development of communicating hydrocephalus after subarachnoid hemorrhage (SAH). METHODS: TGF-beta 1 in the cerebrospinal fluid of 24 patients with SAH was measured with enzyme-linked immunosorbent assay. The levels were compared between hydrocephalic and nonhydrocephalic groups. Western blot analysis was performed to determine active TGF-beta 1 in the cerebrospinal fluid. RESULTS: TGF-beta 1 rapidly decreased from the onset of SAH. The level of TGF-beta 1 of 13 patients showing ventricular dilatation with periventricular low density on computed tomographic scan was 1.07 +/- 0.37 ng/mL on days 12 through 14, which was significantly higher than 0.52 +/- 0.21 ng/mL in patients without ventricular dilatation (P < .02). Furthermore, the TGF-beta 1 level of patients who had undergone ventriculoperitoneal shunt (n = 11) was 1.11 +/- 0.09 ng/mL on days 12 through 14, which was also higher than the level of the nonshunt group (n = 13) (0.56 +/- 0.22 ng/mL; P < .01). A 25-kD band was demonstrated by Western blot analysis in the cerebrospinal fluid of a patient with SAH. CONCLUSIONS: Our results strongly suggest that TGF-beta 1 plays an important role in generating communicating hydrocephalus after SAH.[1]References
- Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Kitazawa, K., Tada, T. Stroke (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg