The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of chronic exposure to naltrexone and opioid selective agonists on G protein mRNA levels in the rat nervous system.

The in situ hybridization technique was used to investigate the effect on G protein alpha subunit expression throughout the brain of rats chronically infused with naltrexone (70 micrograms/microliters, 1 microliter/h), DAGO (0.5 micrograms/microliter, 1 microliter/h), DADLE (11.4 micrograms/microliters, 1 microliter/h), DPDPE (3.4 micrograms/microliters, 1 microliter/h) and U-50,488H (4 micrograms/microliters, 1 microliter/h). Prolonged exposure to naltrexone did not modify G protein alpha subunit mRNA expression, whereas DADLE and U-50,488H, respectively, increased the levels of alpha s and alpha o mRNA in specific brain regions. In particular, a 15% increase in alpha s expression was only observed in the dorsomedial hypothalamic nucleus of rats undergoing chronic DADLE infusion: a 15% increase in alpha o levels was detected in the claustrum and endopiriform nucleus of rats chronically treated with U-50,488H. These are the first in vivo data to demonstrate that only chronic stimulation with an opioid agonist (morphine and/or DADLE and U-50,488H) is capable of modifying G protein alpha subunit mRNA. The regional selectivity of these modifications is discussed, together with the receptor specificity of the opioid effects.[1]

References

  1. Effect of chronic exposure to naltrexone and opioid selective agonists on G protein mRNA levels in the rat nervous system. Rubino, T., Massi, P., Patrini, G., Venier, I., Giagnoni, G., Parolaro, D. Brain Res. Mol. Brain Res. (1994) [Pubmed]
 
WikiGenes - Universities