The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Basal Ganglia

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Basal Ganglia


Psychiatry related information on Basal Ganglia


High impact information on Basal Ganglia


Chemical compound and disease context of Basal Ganglia


Biological context of Basal Ganglia


Anatomical context of Basal Ganglia

  • The distribution of NPY was different from that of any other peptide system described, being particularly concentrated in the basal ganglia, amygdala and nucleus accumbens [26].
  • Although the HPRT gene is normally constitutively expressed in all tissues at low levels, expression is elevated approximately fourfold in several regions of the central nervous system, particularly in the basal ganglia [27].
  • The D2 site is largely restricted to the striatal complex (caudate-putamen, nucleus accumbens septi, and olfactory tubercle), whereas the S2 site is enriched in layer 5 of motor cortex, the perirhinal and cingulate cortices, and the claustrum [28].
  • The basal ganglia are thought to modulate the release or inhibition of movements by way of direct and indirect pathways that act as a push-pull system of cortico-basal ganglia circuits [29].
  • BDNF mRNA-expressing cells were more widely distributed in the rat brain, with high levels in neurons of CA2, CA3, and the hilar region of the dentate gyrus, in the external and internal pyramidal layers of the cerebral cortex, in the claustrum, and in one brainstem structure [30].

Associations of Basal Ganglia with chemical compounds

  • Dopamine visualized in the basal ganglia of living man [31].
  • DARPP-32 (dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32,000) is a neuronal phosphoprotein that displays a regional distribution in the mammalian brain very similar to that of dopamine-containing nerve terminals, being highly concentrated in the basal ganglia [32].
  • By 3 months, glucose metabolic activity had increased in the parietal, temporal, and occipital cortices and the basal ganglia, with subsequent increases in frontal and various association regions occurring by 8 months [33].
  • Expression of the D1 and D2 receptors for dopamine was reduced in the ventral striatum of mutant mice, and the response of double null mutant mice to cocaine, which affects dopamine signaling in the mesolimbic system, was blunted [34].
  • Reduced leucine-enkephalin--like immunoreactive substance in hamster basal ganglia after long-term ethanol exposure [35].

Gene context of Basal Ganglia


Analytical, diagnostic and therapeutic context of Basal Ganglia


  1. Manganese and chronic hepatic encephalopathy. Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., Lichtnecker, H. Lancet (1995) [Pubmed]
  2. Evidence for a cerebral effect of the hepatitis C virus. Forton, D.M., Allsop, J.M., Main, J., Foster, G.R., Thomas, H.C., Taylor-Robinson, S.D. Lancet (2001) [Pubmed]
  3. Dopamine-dependent synaptic plasticity in striatum during in vivo development. Tang, K., Low, M.J., Grandy, D.K., Lovinger, D.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Ikonomidou, C., Stefovska, V., Turski, L. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  5. The neural mechanisms underlying levodopa-induced dyskinesia in Parkinson's disease. Brotchie, J.M. Ann. Neurol. (2000) [Pubmed]
  6. D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Walters, J.R., Bergstrom, D.A., Carlson, J.H., Chase, T.N., Braun, A.R. Science (1987) [Pubmed]
  7. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Szczypka, M.S., Mandel, R.J., Donahue, B.A., Snyder, R.O., Leff, S.E., Palmiter, R.D. Neuron (1999) [Pubmed]
  8. Specificity of serotonin reuptake inhibitors in the treatment of obsessive-compulsive disorder. Comparison of fluvoxamine and desipramine. Goodman, W.K., Price, L.H., Delgado, P.L., Palumbo, J., Krystal, J.H., Nagy, L.M., Rasmussen, S.A., Heninger, G.R., Charney, D.S. Arch. Gen. Psychiatry (1990) [Pubmed]
  9. Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Castellanos, F.X., Giedd, J.N., Berquin, P.C., Walter, J.M., Sharp, W., Tran, T., Vaituzis, A.C., Blumenthal, J.D., Nelson, J., Bastain, T.M., Zijdenbos, A., Evans, A.C., Rapoport, J.L. Arch. Gen. Psychiatry (2001) [Pubmed]
  10. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Kalanithi, P.S., Zheng, W., Kataoka, Y., DiFiglia, M., Grantz, H., Saper, C.B., Schwartz, M.L., Leckman, J.F., Vaccarino, F.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Nasir, J., Floresco, S.B., O'Kusky, J.R., Diewert, V.M., Richman, J.M., Zeisler, J., Borowski, A., Marth, J.D., Phillips, A.G., Hayden, M.R. Cell (1995) [Pubmed]
  12. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Strong, T.V., Tagle, D.A., Valdes, J.M., Elmer, L.W., Boehm, K., Swaroop, M., Kaatz, K.W., Collins, F.S., Albin, R.L. Nat. Genet. (1993) [Pubmed]
  13. Brain neurotransmitters in dystonia musculorum deformans. Hornykiewicz, O., Kish, S.J., Becker, L.E., Farley, I., Shannak, K. N. Engl. J. Med. (1986) [Pubmed]
  14. Evidence for striatal dopamine release during a video game. Koepp, M.J., Gunn, R.N., Lawrence, A.D., Cunningham, V.J., Dagher, A., Jones, T., Brooks, D.J., Bench, C.J., Grasby, P.M. Nature (1998) [Pubmed]
  15. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Picciotto, M.R., Zoli, M., Rimondini, R., Léna, C., Marubio, L.M., Pich, E.M., Fuxe, K., Changeux, J.P. Nature (1998) [Pubmed]
  16. Striatal dopamine depletion, dopamine receptor stimulation, and GABA metabolism: implications for the therapy of Parkinson's disease. Bennett, J.P. Ann. Neurol. (1986) [Pubmed]
  17. Cerebral abnormalities in patients with cirrhosis detected by proton magnetic resonance spectroscopy and magnetic resonance imaging. Geissler, A., Lock, G., Fründ, R., Held, P., Hollerbach, S., Andus, T., Schölmerich, J., Feuerbach, S., Holstege, A. Hepatology (1997) [Pubmed]
  18. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Hilker, R., Klein, C., Ghaemi, M., Kis, B., Strotmann, T., Ozelius, L.J., Lenz, O., Vieregge, P., Herholz, K., Heiss, W.D., Pramstaller, P.P. Ann. Neurol. (2001) [Pubmed]
  19. Alpha-tocopherol levels in brain are not altered in Parkinson's disease. Dexter, D.T., Ward, R.J., Wells, F.R., Daniel, S.E., Lees, A.J., Peters, T.J., Jenner, P., Marsden, C.D. Ann. Neurol. (1992) [Pubmed]
  20. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner, P., Marsden, C.D. Ann. Neurol. (1994) [Pubmed]
  21. Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice. Steiner, H., Bonner, T.I., Zimmer, A.M., Kitai, S.T., Zimmer, A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  22. Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia. Liu, F.C., Graybiel, A.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Regulation of rat cortex function by D1 dopamine receptors in the striatum. Steiner, H., Kitai, S.T. J. Neurosci. (2000) [Pubmed]
  24. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Murer, M.G., Dziewczapolski, G., Menalled, L.B., García, M.C., Agid, Y., Gershanik, O., Raisman-Vozari, R. Ann. Neurol. (1998) [Pubmed]
  25. Phosphoinositide second messenger system is enriched in striosomes: immunohistochemical demonstration of inositol 1,4,5-trisphosphate receptors and phospholipase C beta and gamma in primate basal ganglia. Fotuhi, M., Dawson, T.M., Sharp, A.H., Martin, L.J., Graybiel, A.M., Snyder, S.H. J. Neurosci. (1993) [Pubmed]
  26. Neuropeptide Y distribution in human brain. Adrian, T.E., Allen, J.M., Bloom, S.R., Ghatei, M.A., Rossor, M.N., Roberts, G.W., Crow, T.J., Tatemoto, K., Polak, J.M. Nature (1983) [Pubmed]
  27. Expression of human HPRT in the central nervous system of transgenic mice. Stout, J.T., Chen, H.Y., Brennand, J., Caskey, C.T., Brinster, R.L. Nature (1985) [Pubmed]
  28. Brain dopamine and serotonin receptor sites revealed by digital subtraction autoradiography. Altar, C.A., O'Neil, S., Walter, R.J., Marshall, J.F. Science (1985) [Pubmed]
  29. Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Graybiel, A.M., Canales, J.J., Capper-Loup, C. Trends Neurosci. (2000) [Pubmed]
  30. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Ernfors, P., Wetmore, C., Olson, L., Persson, H. Neuron (1990) [Pubmed]
  31. Dopamine visualized in the basal ganglia of living man. Garnett, E.S., Firnau, G., Nahmias, C. Nature (1983) [Pubmed]
  32. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Hemmings, H.C., Greengard, P., Tung, H.Y., Cohen, P. Nature (1984) [Pubmed]
  33. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Chugani, H.T., Phelps, M.E. Science (1986) [Pubmed]
  34. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Krezel, W., Ghyselinck, N., Samad, T.A., Dupé, V., Kastner, P., Borrelli, E., Chambon, P. Science (1998) [Pubmed]
  35. Reduced leucine-enkephalin--like immunoreactive substance in hamster basal ganglia after long-term ethanol exposure. Blum, K., Briggs, A.H., Elston, S.F., DeLallo, L., Sheridan, P.J., Sar, M. Science (1982) [Pubmed]
  36. Conversion of cerebral cortex into basal ganglia in Emx2(-/-) Pax6(Sey/Sey) double-mutant mice. Muzio, L., DiBenedetto, B., Stoykova, A., Boncinelli, E., Gruss, P., Mallamaci, A. Nat. Neurosci. (2002) [Pubmed]
  37. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Zeng, W.Q., Al-Yamani, E., Acierno, J.S., Slaugenhaupt, S., Gillis, T., MacDonald, M.E., Ozand, P.T., Gusella, J.F. Am. J. Hum. Genet. (2005) [Pubmed]
  38. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. van Swieten, J.C., Brusse, E., de Graaf, B.M., Krieger, E., van de Graaf, R., de Koning, I., Maat-Kievit, A., Leegwater, P., Dooijes, D., Oostra, B.A., Heutink, P. Am. J. Hum. Genet. (2003) [Pubmed]
  39. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. Testa, C.M., Standaert, D.G., Young, A.B., Penney, J.B. J. Neurosci. (1994) [Pubmed]
  40. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Farde, L., Nordström, A.L., Wiesel, F.A., Pauli, S., Halldin, C., Sedvall, G. Arch. Gen. Psychiatry (1992) [Pubmed]
  41. Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. Kalivas, P.W., Duffy, P. J. Neurosci. (1993) [Pubmed]
  42. Patterns of metabolic activity in the treatment of schizophrenia. Brodie, J.D., Christman, D.R., Corona, J.F., Fowler, J.S., Gomez-Mont, F., Jaeger, J., Micheels, P.A., Rotrosen, J., Russell, J.A., Volkow, N.D. Ann. Neurol. (1984) [Pubmed]
  43. The pathophysiology of primary dystonia. Berardelli, A., Rothwell, J.C., Hallett, M., Thompson, P.D., Manfredi, M., Marsden, C.D. Brain (1998) [Pubmed]
  44. Dopamine antagonist haloperidol decreases substance P, substance K, and preprotachykinin mRNAs in rat striatonigral neurons. Bannon, M.J., Lee, J.M., Giraud, P., Young, A., Affolter, H.U., Bonner, T.I. J. Biol. Chem. (1986) [Pubmed]
WikiGenes - Universities