The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Delineation of a region in the B2 bradykinin receptor that is essential for high-affinity agonist binding.

We have made mutations in the predicted sixth transmembrane segment of a rat B2 bradykinin receptor and analyzed the variant proteins by expressing them in COS-1 cells. Two amino acid substitutions reduced the affinity of the receptor for bradykinin (Phe261-->Val by 1600-fold; Thr265-->Ala by 700-fold) with comparatively little effect on the affinity for the bradykinin antagonists NPC17731 and D-Arg-[Hyp3,D-Phe7]bradykinin (where Hyp is hydroxyproline). Three other substitutions (Gln262-->Ala, Asp268-->Ala, and Thr269-->Ala) modestly reduced the affinity for bradykinin and for the antagonist D-Arg-[Hyp3,D-Phe7]bradykinin. Even the most dramatically affected mutated receptors were still able to couple, after bradykinin binding, to phosphatidylinositol turnover. The data suggest that bradykinin directly contacts the face of the sixth transmembrane helix formed by the residues Phe261, Gln262, Thr265, Asp268, and Thr269 or that this face of the helix is the site of intraprotein contacts that serve to stabilize the agonist-binding conformation of the receptor.[1]

References

 
WikiGenes - Universities