The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanisms of regulation of liver fatty acid-binding protein.

Liver fatty acid-binding protein (L-FABP) expression is modulated by developmental, hormonal, dietary, and pharmacological factors. The most pronounced induction is seen after treatment with peroxisome proliferators, which induce L-FABP coordinately with microsomal cytochrome P-450 4A1 and the enzymes of peroxisomal fatty acid beta-oxidation. These effects of peroxisome proliferators may be mediated by a receptor which has been shown to be activated by peroxisome proliferators in mammalian cell transfection studies. However, the peroxisome proliferators tested thus far do not bind to this receptor, known as the peroxisome proliferator-activated receptor (PPAR), and its endogenous ligand(s) also remain unknown. Peroxisome proliferators inhibit mitochondrial beta-oxidation, and one hypothesis is that the dicarboxylic fatty acid metabolites of accumulated LCFA, formed via the P-450 4A1 omega-oxidation pathway, serve as primary inducers of L-FABP and peroxisomal beta-oxidation. We have tested this hypothesis in primary hepatocyte cultures exposed to clofibrate (CF). Inhibition of P-450 4A1 markedly diminished, via a pre-translational mechanism, the CF induction of L-FABP and peroxisomal beta-oxidation. In further experiments, long-chain dicarboxylic acids, the final products of the P-450 4A1 omega-oxidation pathway, but not LCFA, induced L-FABP and peroxisomal beta-oxidation pre-translationally. These results suggest a role, in part, for long-chain dicarboxylic acids in mediating the peroxisome proliferator induction of L-FABP and peroxisomal beta-oxidation. We also found that LCFA, which undergo rapid hepatocellular metabolism, could become inducers of L-FABP and peroxisomal beta-oxidation under conditions where their metabolism was inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Mechanisms of regulation of liver fatty acid-binding protein. Kaikaus, R.M., Chan, W.K., Ortiz de Montellano, P.R., Bass, N.M. Mol. Cell. Biochem. (1993) [Pubmed]
 
WikiGenes - Universities