The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation.

As an early stage of plant transformation by Agrobacterium tumefaciens, the Ti plasmid is nicked at the border sequences that delimit the T-DNA. Cleavage results in covalent attachment of VirD2 to the 5' terminal of the nicked strand by a process resembling initiation of DNA transfer that occurs in the donor cell during bacterial conjugation. We demonstrate that this cleavage can be reproduced in vitro: VirD2 protein, the border-cleaving enzyme, was overproduced and purified. Cleavage assays were performed with single-stranded oligodeoxyribonucleotides encompassing the Ti plasmid border region or the transfer origin's nick region of the conjugative plasmid RP4. VirD2 of pTiC58 cleaves both border- and nick region-containing oligonucleotides. However, the relaxase TraI of RP4 can cut only the cognate nick regions. The respective proteins remain covalently bound to the 5' end of the cleavage sites, leaving the 3' termini unmodified. VirD2-mediated oligonucleotide cleavage was demonstrated to be an equilibrium reaction that allows specific joining of cleavage products restoring border and nick regions, respectively. The possible role of VirD2 in T-DNA integration into the plant cell's genome is discussed in terms of less stringent target-sequence requirements.[1]

References

 
WikiGenes - Universities