The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Non-peptide angiotensin II receptor antagonists. 1. Design, synthesis, and biological activity of N-substituted indoles and dihydroindoles.

A series of N-acylated indoles (12-18), N-alkylated indoles (19-24), N-acylated dihydroindoles (26-30), and N-alkylated dihydroindoles (31-34) were synthesized and evaluated in the in vitro AT1 (rabbit aorta) and AT2 (rat midbrain) binding assay. The carboxylic acid 3-[[N-(2-carboxy-3,6-dichlorobenzoyl)-5-indolyl]methyl]-5,7-dimeth yl- 2-ethyl-3H-imidazo[4,5-b]pyridine (14b) was found to be the most potent AT1 (IC50 = 0.8 nM) antagonist in the N-acylated indole series and displayed a 25-fold higher potency than the parent unsubstituted derivative 14a (AT1 IC50 = 20 nM) and a 22-fold greater potency than the corresponding dihydroindole analog 27 (AT1 IC50 = 18 nM). Replacement of the terminal carboxyl (COOH) of 14a with the bioisostere tetrazole in 16 (AT1 IC50 = 5 nM, AT2 IC50 = 130 nM) not only improved the AT1 potency by 4-fold but also resulted in a 50-fold increase in AT2 activity. In the N-alkylated indole series, the tetrazole 3-[[N-(2-tetrazol-5-yl-6-chlorobenzyl)-5- indolyl]methyl]-5,7-dimethyl-2-ethyl-3H-imidazo[4,5-b]pyridine (24) exhibited the highest AT1 (IC50 = 1 nM) activity, revealing a 230-fold increase in AT1 activity as a result of the incorporation of the isosteric tetrazole for the carboxyl (COOH) of 20 and a nearly 9-fold increase over the corresponding deschloro analog 22 (AT1 IC50 = 8.7 nM). Tetrazole 34 was identified as the most potent (AT1 IC50 = 18 nM) AT1 receptor antagonist in a structurally distinct series of compounds derived from N-alkylation of dihydroindole 25. A new class of highly potent (14b, AT1 IC50 = 0.8 nM; 24, AT1 IC50 = 1 nM) AT1-selective non-peptide AII receptor antagonists derived from N-substituted indoles and dihydroindoles is disclosed. Tetrazole 24 of the N-alkylated indole series displayed good in vivo activity by blocking the AII-induced pressor response for 5.5 h after intravenous administration in conscious normotensive rats at a 1.0 mg/kg dose level.[1]


  1. Non-peptide angiotensin II receptor antagonists. 1. Design, synthesis, and biological activity of N-substituted indoles and dihydroindoles. Dhanoa, D.S., Bagley, S.W., Chang, R.S., Lotti, V.J., Chen, T.B., Kivlighn, S.D., Zingaro, G.J., Siegl, P.K., Patchett, A.A., Greenlee, W.J. J. Med. Chem. (1993) [Pubmed]
WikiGenes - Universities