The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Agtr1a  -  angiotensin II receptor, type 1a

Rattus norvegicus

Synonyms: AT1, AT1A, AT1R, Agtr1, Angiotensin II type-1A receptor, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Agtr1a


Psychiatry related information on Agtr1a


High impact information on Agtr1a


Chemical compound and disease context of Agtr1a

  • Therefore, we investigated the effect of AT1 or AT2 subtype receptor chronic blockade by losartan or PD123319 on the vascular hypertrophy in rats with Ang II-induced hypertension [14].
  • The goal of this study was to evaluate the contributions of oestrogen and weight loss to isoproterenol (isoprenaline; Iso)-induced Fos immunoreactivity (IR) and to angiotensin type 1 (AT1) receptor mRNA in forebrain regions implicated in the control of fluid balance [5].
  • Treatment with the AT1 receptor antagonist losartan for 3 weeks in the 21-day-old rat or for 4 days in the 38-day-old rat resulted in a significant decrease in heart/body weight in both groups and body weight in the 3-week treatment group [15].
  • These data indicate that in Wistar rats, a chronic increase in CSF [Na+] may increase hypothalamic aldosterone and activate CNS pathways involving MR, and OLC, leading to increases in AT1-receptor and ACE densities in brain areas involved in cardiovascular regulation and hypertension [16].
  • To elucidate the possible involvement of angiotensin II (AII) in the pathogenesis of microvascular changes in severe hypertension, we investigated the effects of angiotensin II type 1 (AT1) receptor antagonist and angiotensin-converting enzyme inhibitor (ACEI) on the expression of adhesion molecules of leukocytes and brain microvessels [17].

Biological context of Agtr1a


Anatomical context of Agtr1a

  • The data demonstrate that angiotensin II, via AT1 receptors, can stimulate cardiac fibroblast growth and increase collagen synthesis in cardiac tissue [23].
  • AT1 receptors were detected in the placenta at E13 and in the aorta, kidney, lung, liver, and adrenal gland at E19-21, consistent with an adult distribution [24].
  • AT-1 receptor mRNA levels decreased 54% (P < .05) only in the myocardium of decompensated rats, whereas AT-2 receptor mRNA did not change in any tissue studied [25].
  • These results suggest a predominance of the AT1 receptor subtype in neonatal astrocytes [20].
  • In this study, the effects of angiotensin II (AngII) type 1 (AT1) and type 2 (AT2) receptor stimulation on glycosaminoglycan and proteoglycan core protein synthesis in vascular smooth muscle cells (VSMC) were examined [26].

Associations of Agtr1a with chemical compounds


Physical interactions of Agtr1a


Enzymatic interactions of Agtr1a

  • The PLCgamma1-AT1 receptor interaction appears to depend on phosphorylation of tyrosine 319 in a YIPP motif in the C-terminal intracellular domain of the AT1 receptor and binding of the phosphorylated receptor by the most C-terminal of two Src homology 2 domains in PLCgamma1 [32].

Regulatory relationships of Agtr1a


Other interactions of Agtr1a


Analytical, diagnostic and therapeutic context of Agtr1a


  1. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Murphy, T.J., Alexander, R.W., Griendling, K.K., Runge, M.S., Bernstein, K.E. Nature (1991) [Pubmed]
  2. Differential effects of angiotensin AT1 and AT2 receptors on the expression, translation and function of the Na+-H+ exchanger and Na+-HCO3- symporter in the rat heart after myocardial infarction. Sandmann, S., Yu, M., Kaschina, E., Blume, A., Bouzinova, E., Aalkjaer, C., Unger, T. J. Am. Coll. Cardiol. (2001) [Pubmed]
  3. Differential roles of AT1 and AT2 receptor subtypes in vascular trophic and phenotypic changes in response to stimulation with angiotensin II. Sabri, A., Levy, B.I., Poitevin, P., Caputo, L., Faggin, E., Marotte, F., Rappaport, L., Samuel, J.L. Arterioscler. Thromb. Vasc. Biol. (1997) [Pubmed]
  4. Early streptozotocin-diabetes mellitus downregulates rat kidney AT2 receptors. Wehbi, G.J., Zimpelmann, J., Carey, R.M., Levine, D.Z., Burns, K.D. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  5. Oestrogen and weight loss decrease isoproterenol-induced Fos immunoreactivity and angiotensin type 1 mRNA in the subfornical organ of female rats. Krause, E.G., Curtis, K.S., Stincic, T.L., Markle, J.P., Contreras, R.J. J. Physiol. (Lond.) (2006) [Pubmed]
  6. Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Kakar, S.S., Riel, K.K., Neill, J.D. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  7. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Sanvitto, G.L., Jöhren, O., Häuser, W., Saavedra, J.M. Am. J. Physiol. (1997) [Pubmed]
  8. The reduction in alcohol drinking by peripherally injected angiotensin II is selectively mediated by the AT1 receptor subtype. Grupp, L.A., Harding, S. Pharmacol. Biochem. Behav. (1994) [Pubmed]
  9. Effect of losartan on sodium appetite of hypothyroid rats subjected to water and sodium depletion and water, sodium and food deprivation. Badauê-Passos, D., Ventura, R.R., Silva, L.F., Olivares, E.L., Ramalho, M.J., Antunes Rodrigues, J., Reis, L.C. Exp. Physiol. (2001) [Pubmed]
  10. Effect of repeated administration of KT3-671, a nonpeptide AT1 receptor antagonist, on diurnal variation in blood pressure, heart rate, and locomotor activity in stroke-prone spontaneously hypertensive rats as determined by radiotelemetry. Kawashima, K., Amano, H., Fujimoto, K., Suzuki, T., Fujii, T., Mochizuki, S., Tomiyama, A. J. Cardiovasc. Pharmacol. (1996) [Pubmed]
  11. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Marrero, M.B., Schieffer, B., Paxton, W.G., Heerdt, L., Berk, B.C., Delafontaine, P., Bernstein, K.E. Nature (1995) [Pubmed]
  12. The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. Lucius, R., Gallinat, S., Rosenstiel, P., Herdegen, T., Sievers, J., Unger, T. J. Exp. Med. (1998) [Pubmed]
  13. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Lenkei, Z., Palkovits, M., Corvol, P., Llorens-Cortès, C. Frontiers in neuroendocrinology. (1997) [Pubmed]
  14. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. Levy, B.I., Benessiano, J., Henrion, D., Caputo, L., Heymes, C., Duriez, M., Poitevin, P., Samuel, J.L. J. Clin. Invest. (1996) [Pubmed]
  15. Developmental regulation of angiotensin type 1 and 2 receptor gene expression and heart growth. Everett, A.D., Fisher, A., Tufro-McReddie, A., Harris, M. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  16. Activation of brain renin-angiotensin-aldosterone system by central sodium in Wistar rats. Huang, B.S., Cheung, W.J., Wang, H., Tan, J., White, R.A., Leenen, F.H. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  17. Effects of the AT1 receptor antagonist on adhesion molecule expression in leukocytes and brain microvessels of stroke-prone spontaneously hypertensive rats. Takemori, K., Ito, H., Suzuki, T. Am. J. Hypertens. (2000) [Pubmed]
  18. Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. Ruan, X., Wagner, C., Chatziantoniou, C., Kurtz, A., Arendshorst, W.J. J. Clin. Invest. (1997) [Pubmed]
  19. Up-regulation of components of the renin-angiotensin system in the bile duct-ligated rat liver. Paizis, G., Cooper, M.E., Schembri, J.M., Tikellis, C., Burrell, L.M., Angus, P.W. Gastroenterology (2002) [Pubmed]
  20. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Sumners, C., Tang, W., Zelezna, B., Raizada, M.K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  21. Agonist-induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells. Smith, R.D., Baukal, A.J., Zolyomi, A., Gaborik, Z., Hunyady, L., Sun, L., Zhang, M., Chen, H.C., Catt, K.J. Mol. Endocrinol. (1998) [Pubmed]
  22. Angiotensin II receptor subtypes in the kidney. Edwards, R.M., Aiyar, N. J. Am. Soc. Nephrol. (1993) [Pubmed]
  23. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. Crabos, M., Roth, M., Hahn, A.W., Erne, P. J. Clin. Invest. (1994) [Pubmed]
  24. Expression of AT2 receptors in the developing rat fetus. Grady, E.F., Sechi, L.A., Griffin, C.A., Schambelan, M., Kalinyak, J.E. J. Clin. Invest. (1991) [Pubmed]
  25. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Pieruzzi, F., Abassi, Z.A., Keiser, H.R. Circulation (1995) [Pubmed]
  26. Regulation of vascular proteoglycan synthesis by angiotensin II type 1 and type 2 receptors. Shimizu-Hirota, R., Sasamura, H., Mifune, M., Nakaya, H., Kuroda, M., Hayashi, M., Saruta, T. J. Am. Soc. Nephrol. (2001) [Pubmed]
  27. Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. Miura, S., Karnik, S.S. J. Hypertens. (1999) [Pubmed]
  28. Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. Szaszák, M., Gáborik, Z., Turu, G., McPherson, P.S., Clark, A.J., Catt, K.J., Hunyady, L. J. Biol. Chem. (2002) [Pubmed]
  29. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. McWhinney, C.D., Dostal, D., Baker, K. J. Mol. Cell. Cardiol. (1998) [Pubmed]
  30. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. Ali, M.S., Sayeski, P.P., Dirksen, L.B., Hayzer, D.J., Marrero, M.B., Bernstein, K.E. J. Biol. Chem. (1997) [Pubmed]
  31. Alterations in sympathetic ganglionic transmission in response to angiotensin II in (mRen2)27 transgenic rats. Aileru, A.A., Logan, E., Callahan, M., Ferrario, C.M., Ganten, D., Diz, D.I. Hypertension (2004) [Pubmed]
  32. Angiotensin II-induced association of phospholipase Cgamma1 with the G-protein-coupled AT1 receptor. Venema, R.C., Ju, H., Venema, V.J., Schieffer, B., Harp, J.B., Ling, B.N., Eaton, D.C., Marrero, M.B. J. Biol. Chem. (1998) [Pubmed]
  33. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. Siragy, H.M., Carey, R.M. J. Clin. Invest. (1996) [Pubmed]
  34. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Saavedra, J.M., Armando, I., Bregonzio, C., Juorio, A., Macova, M., Pavel, J., Sanchez-Lemus, E. Neuropsychopharmacology (2006) [Pubmed]
  35. Extracellular signal regulated kinase and SMAD signaling both mediate the angiotensin II driven progression towards overt heart failure in homozygous TGR(mRen2)27. Boer, R.A., Pokharel, S., Flesch, M., van Kampen, D.A., Suurmeijer, A.J., Boomsma, F., van Gilst, W.H., van Veldhuisen, D.J., Pinto, Y.M. J. Mol. Med. (2004) [Pubmed]
  36. Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Nishiyama, A., Yoshizumi, M., Rahman, M., Kobori, H., Seth, D.M., Miyatake, A., Zhang, G.X., Yao, L., Hitomi, H., Shokoji, T., Kiyomoto, H., Kimura, S., Tamaki, T., Kohno, M., Abe, Y. Kidney Int. (2004) [Pubmed]
  37. Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. Lu, D., Yang, H., Shaw, G., Raizada, M.K. Endocrinology (1998) [Pubmed]
  38. Characterization of angiotensin II receptor subtypes in rat heart. Sechi, L.A., Griffin, C.A., Grady, E.F., Kalinyak, J.E., Schambelan, M. Circ. Res. (1992) [Pubmed]
  39. Effects of candesartan on angiotensin II-induced renal vasoconstriction in rats and mice. Ruan, X., Purdy, K.E., Oliverio, M.I., Coffman, T.M., Arendshorst, W.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  40. Regulation of angiotensin II type 1 receptor mRNA and protein in angiotensin II-induced hypertension. Harrison-Bernard, L.M., El-Dahr, S.S., O'Leary, D.F., Navar, L.G. Hypertension (1999) [Pubmed]
  41. Regulation of type 1 angiotensin II receptor in adrenal gland: role of alpha1-adrenoreceptor. Wang, D.H., Qiu, J., Hu, Z., Du, Y. Hypertension (1997) [Pubmed]
  42. Roles of AT1 and AT2 receptors in the hypertensive Ren-2 gene transgenic rat kidney. Zhuo, J., Ohishi, M., Mendelsohn, F.A. Hypertension (1999) [Pubmed]
WikiGenes - Universities