Unusual reactivity of Tyr-7 of GSH transferase P1-1.
Reaction of human GSH transferase P1-1 (GSTP1-1) with diethylpyrocarbonate (DEPC) at pH 7.0 and 4 degrees C resulted in covalent modification of an equivalent of one histidine and one tyrosine residue per subunit, with loss of activity. Sequence analysis showed that His-71 and Tyr-7 were modified. Reference to the three-dimensional structure of GSTP1-1 [Reinemer, Dirr, Ladenstein, Huber, Lo Bello, Frederici and Parker (1992) J. Mol. Biol. 227, 214-226] shows that the modification of Tyr-7 is most likely to affect enzyme activity. Kinetic analysis of the DEPC modification of Tyr-7 in GSTP1-1 gave a k2 approx. 150 times that of a peptide comprising residues 1-11 of GSTP1-1. The reaction of Tyr-7 of GSTP1-1 with DEPC was poorly inhibited by 1 mM GSH (14%) or 10 microM S-hexylglutathione (18%). DEPC treatment of the enzyme altered the absorbance at 290 nm in second-derivative spectra, suggesting that a significant amount of tyrosinate ion occurs in the enzyme. GSH, however, did not significantly alter the A290. The data provide the first evidence of unusual chemical reactivity of Tyr-7 and are consistent with its proposed role as a proton acceptor during catalysis.[1]References
- Unusual reactivity of Tyr-7 of GSH transferase P1-1. Meyer, D.J., Xia, C., Coles, B., Chen, H., Reinemer, P., Huber, R., Ketterer, B. Biochem. J. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg