The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Unusual reactivity of Tyr-7 of GSH transferase P1-1.

Reaction of human GSH transferase P1-1 (GSTP1-1) with diethylpyrocarbonate (DEPC) at pH 7.0 and 4 degrees C resulted in covalent modification of an equivalent of one histidine and one tyrosine residue per subunit, with loss of activity. Sequence analysis showed that His-71 and Tyr-7 were modified. Reference to the three-dimensional structure of GSTP1-1 [Reinemer, Dirr, Ladenstein, Huber, Lo Bello, Frederici and Parker (1992) J. Mol. Biol. 227, 214-226] shows that the modification of Tyr-7 is most likely to affect enzyme activity. Kinetic analysis of the DEPC modification of Tyr-7 in GSTP1-1 gave a k2 approx. 150 times that of a peptide comprising residues 1-11 of GSTP1-1. The reaction of Tyr-7 of GSTP1-1 with DEPC was poorly inhibited by 1 mM GSH (14%) or 10 microM S-hexylglutathione (18%). DEPC treatment of the enzyme altered the absorbance at 290 nm in second-derivative spectra, suggesting that a significant amount of tyrosinate ion occurs in the enzyme. GSH, however, did not significantly alter the A290. The data provide the first evidence of unusual chemical reactivity of Tyr-7 and are consistent with its proposed role as a proton acceptor during catalysis.[1]


  1. Unusual reactivity of Tyr-7 of GSH transferase P1-1. Meyer, D.J., Xia, C., Coles, B., Chen, H., Reinemer, P., Huber, R., Ketterer, B. Biochem. J. (1993) [Pubmed]
WikiGenes - Universities