The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Preferential intercalation at AT sequences in DNA by lucanthone, hycanthone, and indazole analogs. A footprinting study.

DNAase I footprinting has been used to probe the DNA sequence selectivity of the antitumor intercalating agents lucanthone (1), hycanthone (2), 6-chlorolucanthone (7), and four indazole analogs (IA-3-IA-6). The latter have a benzothiopyranoindazole chromophore substituted with a diethylaminoethyl side chain identical to that attached to the thioxanthenone chromophore of compounds 1, 2, and 7. IA-3 and IA-5 are lucanthone analogs bearing a methyl group at position 4, whereas IA-4 and IA-6 are hycanthone analogs bearing a hydroxymethyl group. IA-3 and IA-4 have an additional chloro group at position 6. Studies employing the 160-bp tyrT DNA fragment as substrate to assay inhibition of DNAase I-mediated cleavage show that both lucanthone and hycanthone bind preferentially to AT sites. They discriminate against GC-rich sequences as well as short runs of a single base, which are often cut more readily in the presence of the drugs compared to the control. The indazole analogs exhibit more pronounced selectivity of binding to AT sequences and promote enhanced DNAase I cleavage both at GC-rich sequences and at homooligomeric runs of adenines or thymines. The results of further DNAase I cleavage inhibition assays, performed with three more restriction fragments having different base pair arrangements, are fully consistent with those obtained with the tyrT fragment. They reveal that the preferred binding sequences for lucanthone, hycanthone, and the indazole analogs are predominantly composed of alternating A and T residues.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

 
WikiGenes - Universities